• Title/Summary/Keyword: Thermal dissipation

Search Result 413, Processing Time 0.029 seconds

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

Cyclic tests of steel frames with composite lightweight infill walls

  • Hou, Hetao;Chou, Chung-Che;Zhou, Jian;Wu, Minglei;Qu, Bing;Ye, Haideng;Liu, Haining;Li, Jingjing
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.163-178
    • /
    • 2016
  • Composite Lightweight (CL) insulated walls have gained wide adoption recently because the exterior claddings of steel building frames have their cost effectiveness, good thermal and structural efficiency. To investigate the seismic behavior, lateral stiffness, ductility and energy dissipation of steel frames with the CL infill walls, five one-story one-bay steel frames were fabricated and tested under cyclic loads. Test results showed that the bolted connections allow relative movement between CL infill walls and steel frames, enabling the system to exhibit satisfactory performance under lateral loads. Additionally, it is found that the addition of diagonal steel straps to the CL infill wall significantly increases the initial lateral stiffness, load-carrying capacity, ductility and energy dissipation capacity of the system. Furthermore, the test results indicate that the lateral stiffness values of the frames with the CL infill wall are similar to those of the bare steel frames in large lateral displacement.

A Modeling for Li-Ion Battery Performance Analysis of GEO Satellite (정지궤도 인공위성 리튬-이온 배터리 성능 해석을 위한 모델링)

  • Koo, Ja-Chun;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.150-157
    • /
    • 2014
  • Li-Ion battery is used in the most satellites now due to advantages such as weight, thermal dissipation and self discharge compared to the previous generations of electrochemical batteries. The performance analysis model of the Li-Ion battery is needed to aid the design of new satellite electrical power subsystem. This paper develops the performance analysis model of the Li-Ion battery to apply to the electrical power subsystem design and energy balance analysis on geostationary orbit. The analysis model receives the satellite bus power, solar array power and battery temperature and gives the battery voltage, charge and discharge currents, taper index, state of charge and power dissipation. The results from the performance analysis are compared and analyzed with the flight data to verify the model. The compared results show satisfactory without significant difference with the flight data.

Structural Design of 3D Printer Nozzle with Superior Heat Dissipation Characteristics for Deposition of Materials with High Melting Point (고 용융점 소재의 압출적층성형을 위한 우수한 방열특성을 갖는 3차원 프린터 nozzle부 기구설계)

  • Kim, Wan-Chin;Lee, Sang-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.313-318
    • /
    • 2020
  • Since the engineering plastics having a melting point of higher than 300 degrees have a high mechanical rigidity, chemical resistance, friction and abrasion performance, those are being highlighted as metal replacement materials in various industries. In this study, 3D printer nozzle with excellent heat dissipation characteristics are designed and analytically verified to form engineering plastics with high melting points in 3D printers based on the melt-lamination modeling method. In order to insulate between the heat block heated to a melting point of filament material and the upper part of the nozzle where the filament is transferred, the heat brake part with low thermal conductivity was designed to have two separate parts, and a cooling fin structure is further applied to the heat brake part to lower steady-state temperature by air convection. Optimized structural design on FDM nozzle part reduces the temperature at the heat sink and at the end part of heat brake by 50% and 14% respectively, compared to the conventional BCnozzle structure.

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy (Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계)

  • Yoon, D.H.;Jung, J.E.;Chang, Y.W.;Lee, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

A Study on Improving the Efficiency of a Heat Dissipation Design for 30 W COB LED Light Source (30 W COB LED광원의 효율 개선을 위한 방열설계에 관한 연구)

  • Seo, BumSik;Lee, KiJoung;Cho, Young Seek;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • In this paper, thermal analysis of heatsink for 30 W class Chip-on-Board (COB) LED light source is performed by using SolidWorks Flow Simulation package. In order to increase the convection heat transfer, number of fin and shape of the heatsink is optimized. Furthermore, a copper spread is applied between the COB LED light source and the heatsink to mitigate the heat concentration on the heatsink. With the copper spread, the junction temperature between the COB LED light source and the heatsink is $50.9^{\circ}C$, which is $5.4^{\circ}C$ lower than the heatsink without the copper spread. Due to the improvement of the junction temperature, the light output is improved by 5.8% when the LED light source is stabilized. The temperature difference between the simulation and measured result of the heatsink with the copper spread is within $2^{\circ}C$, which verifies the validity of the thermal design method using a simulation package.

Time-resolved Observation of Field-dependent Magnetization Reversal Behavior in Co/Pd Multilayer Film

  • Ryu, Kwang-Su;Lee, Kyeong-Dong;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.108-112
    • /
    • 2003
  • We report the experimental finding that there exists a transition of magnetization reversal process with varying the applied field in Co/Pd multilayer. We have measured the wall-motion speed V and the nucleation rate R during magnetization reversal via time-resolved direct domain observation, where the magnetization reversal process of Co/Pd multilayer is found to take a transition from thermal activation process to viscous process at the critical field of about 1.87 H$\_$C/ (coercivity). In the thermal activation regime, we find that the field dependences of two activation volumes for the wall-motion process and the nucleation process are different with each other, which reveals that the wall-motion and nucleation experience completely different interactions. In the viscous regime, we find that the wall-mobility is much smaller than a typical value for the sandwiched Co films, which implies that the Co/Pd interfaces in multilayer substantially contribute to the dynamic dissipation.

A Study on Optimal Design According to Change of Coil Distribution in Slot Less Type Permanent Magnet Synchronous Motor (소형 Slot less PMSM의 coil 배치에 따른 최적 설계 및 열 내구성 분석)

  • Kim, Yong-Tae;Go, Duk-Hwa;Gim, Gyu-Hwa;Baek, Sung-Min;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • In this paper, slot less type high-speed and compact motor was designed. it was selected through change of stator coil distribution for the optimal performance of the motor. In this paper, designed motor was expected to be very vulnerable to heat dissipation in a compact motor. Therefore, to ensure reliability in the design result, winding and permanent magnet damage caused by the losses of motor was analyzed by thermal analysis and demagnetization analysis. Using the result, whether motor burnout was confirmed by motor performance degradation and insulation breakdown.

The Optimization of FCBGA thermal Design by Micro Pattern Structure (마이크로 패턴 구조를 이용한 플립칩 패키지 BGA의 최적 열설계)

  • Lee, Tae-Kyoung;Kim, Dong-Min;Jun, Ho-In;Ha, Sang-Won;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • According to the trends of electronic package to be smaller, thinner and more integrative, Flip Chip Ball Grid Array (FCBGA) become more used for mobile phone. However, the flip chip necessarily generate the heat by the electrical resistance and generated heat is increased due to reduced distribution area of the heat in accordance with the miniaturization trend of the package. Thermal issues can result in problems of devices that are sensitive to temperature and stress. Then the heat can generate problems to the system. In this paper, in order to improve the thermal issues of FCBGA, thermal characteristics of FCBGA was analyzed qualitatively by using the general heat transfer module of Comsol 3.5a and In order to solve thermal issues, flip chip with new micro structure is proposed by the simulation. and also by comparing existing model and analyzing variables such as pitch, height of the pattern and shape of the heat spreader, the improvement of heat dissipation characteristics about 18% was confirmed.