• Title/Summary/Keyword: Thermal curing

Search Result 517, Processing Time 0.029 seconds

A numerical study on the residual stress in LED encapsulment silicone after curing and cooling (경화 및 냉각을 거친 LED 패키징 실리콘의 잔류응력에 대한 수치해석적 고찰)

  • Song, M.J.;Kim, K.H.;Kang, J.J.;Kim, H.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.425-428
    • /
    • 2009
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. To mold a solid-state silicone encapsulment, curing by mixing at elevated temperatures followed by cooling is necessary. As the silicone molding process is involved in healing and subsequent cooling, the thermal residual stress, which causes mechanical warpage or optical birefringence in the final silicone encapsulment, may be induced if there are non-uniformities in cured silicone material properties or encapsulment shape design. The prediction of residual stress is necessary to design a high-quality silicone molding process. Therefore, in the present paper, a numerical parametric study was attempted to evaluate the heating and cooling effects on the thermal residual stress induced in the cured silicone.

  • PDF

Thermal, Curing, Elastic, and Mechanical Properties of Ethylene Propylene Diene Monomer/Polybutadiene/Carbon Black Composites

  • Tae-Hee Lee;Keon-Soo Jang
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.142-151
    • /
    • 2023
  • In this study, we investigate the thermal and mechanical properties of composites comprising ethylene propylene diene monomer (EPDM) and polybutadiene (PB) obtained using carbon black (CB) as a reinforcing and compatibilizing filler. Owing to the significance of elastomeric materials in various industrial applications, blending of EPDM and PB has emerged as a strategic method to optimize the material properties for specific applications. This study offers insights into the blend composition, its microstructure, and the resulting macroscopic behaviors, focusing on the synergetic effects of composite materials. Furthermore, this study delves into curing and rheological behaviors, crosslink densities, and mechanical, thermal, and elastic properties of the elastomeric composites. Through systematic exploration, we believe that this study will be beneficial to material scientists and engineers working on developing advanced elastomeric composites.

Chemo-Mechanical Analysis of Bifunctional linear DGEBF/Aromatic Amino Resin Casting Systems (DGEBF/방향족아민 경화계의 벤젠링 사이에 위치한 Methyl기와 Sulfone기가 유발하는 물성변화에 대한 연구)

  • Lee Jae-Rock;Myung In-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • To determine the effect of chemical structure of aromatic amino curing agents on thermal and mechanical properties, standard epoxy resin DGEBF (diglycidylether of bisphenol F) was cured with diaminodiphenyl methane (DDM) and diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work the effect of aromatic amino curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure of curing agents. In contrast, the results show that the DGEBF/DDS system having the sulfone structure between the benzene rings had higher values in the thermal stability, density, shrinkage ($\%$), thermal expansion coefficient, tensile modulus and strength, flexural modulus and strength than the DGEBF/DDM system having methylene structure between the benzene rings, whereas the DGEBF/DDS system presented low values in maximum exothermic temperature, conversion of epoxide, and grass transition temperature. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property. The result of fractography shows that the grain distribution of DGEBF/DDS system is more irregular than that of the DGEBF/DDM system.

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

Synthesis and Characteristics of Zirconium Hybridized Polycarbosilane (지르코늄 혼성 폴리카르보실란의 합성 및 특성)

  • Kang, Phil-Hyun;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.791-797
    • /
    • 1998
  • As organosilicon based preceramic polymer, new zirconium hybridized polycarbosilane having a good thermal stability and forming stage was synthesized. Oxidative stability(infusibility) and mechanical property of this polymer during the thermal curing process and heat treatment were examined. Prepared zirconium hybridized polycarbisilane (PZC) was spun into fiber at $250{\sim}270^{\circ}C$. Spinnability of PZC polymer having a molecular weight of 1000 to 1400 and having a dispersity<2 was good. The thermal curing process of the PZC fiber was done at 140 to $200^{\circ}C$. The mechanical properties of PZC ceramic fiber depend on curing temperature of PZC as precursor of PZC ceramic fiber. It was found that the optimum curing temperature was variable with the molecular weight of PZC. The cured PZC fiber need constant gel fraction to have good tensile strength.

  • PDF

Microstructures and Thermal Properties of Polycaprolactone/Epoxy Resin/SiO2 Hybrids

  • He, Lihua;Liu, Pinggui;Ding, Heyan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • A series of organic-inorganic hybrids, PCL/EP/$SiO_2$, involving epoxy resin and triethoxysilane-terminated polycaprolactone elastomer (PCL-TESi) were prepared via polymerization of diglycidyl ether of bisphenol A (DGEBA) with amine curing agent KB-2 and sol-gel process of PCL-TESi. The curing reactions were started from the initially homogeneous mixture of DGEBA, KB-2 and the PCL-TESi. The organicinorganic hybrids containing up to 4.95% (wt) of $SiO_2$ were obtained and characterized by FT-IR, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). It was experimentally shown that the swelling property in toluene, morphologies and thermal properties of the resulting hybrids were quite dependent on the contents of $SiO_2$. The crosslink network density decreases with increasing of the PCL-TESi. And in TEM, the phase separated morphology of these hybrids was found, which resulted from the coagulation of Si-O-Si networks resulting from $-Si(OC_2H_5)_3$ of PCL-TESi self-curing by hydrolytic silanol condensation, with the advancement of the curing reaction in the modified epoxy resin systems. Meanwhile, the change of the $SiO_2$ content made the morphologies changed from aggregated particles of Si-O-Si in the hybrid to nanocluster of interconnected Si-O-Si particles, then to aggregated Si-O-Si dispersing in the continuous cured epoxy phase again, and last to co-continuous interpenetrating network. The glass transition behavior of the hybrid material was cooperative motion of large chain segments, which were hindered by the inorganic Si-O-Si network. And in TG analysis, the characteristic temperature at 5% of weight loss was evidently increased from $120.5^{\circ}C$ of pure cured epoxy to $277.6^{\circ}C$ of 3.84% (wt) of $SiO_2$ modified epoxy due to the existence of Si-O-Si when PCL-TESi was added in the hybrid.

  • PDF

A Study on the Curing Behaviors of Glass/Epoxy Prepreg by Dielectrometer and the Thermal Properties of Cured Glass/Epoxy Composites (Dielectrometer를 이용한 Glass/Epoxy 프리프레그의 경화거동 및 경화물의 열적 특성연구)

  • 제갈영순;이원철;전영재;윤남균
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Curing behaviors of glass/epoxy prepreg for printed circuit boards (PCB) were studied by using dielectrometer and differential scanning calorimeter. This prepreg was showed the lowest ionic viscosity at about 115$^{\circ}C$, and then the ionic viscosity was gradully increased up to 15$0^{\circ}C$. This indicated that the curing reaction of this prepreg started at 115$^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The dielectric behaviors of this prepreg system were also measured according to the cure cycle for PCB. This material was found to be thermally stable up to about 30$0^{\circ}C$ and then was showed an abrupt decomposition beyond this temperature.

  • PDF

Influence of the Cure Systems on Long Time Thermal Aging Behaviors of NR Composites

  • Choi, Sung-Seen;Kim, Jong-Chul;Lee, Seung-Goo;Joo, Yong-L.
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.561-566
    • /
    • 2008
  • NR composites with different curing systems were aged thermally at 60, 70, 80, and $90^{\circ}C$ for 2-185 days in a convection oven, and the changes in the crosslink density were investigated as a function of the accelerated thermal aging. The overall crosslink densities increased with increasing aging time irrespective of the aging temperatures and curing systems. The changes in crosslink density were enhanced by increasing the aging temperature. The degree of the increased crosslink density was in the following order: "the conventional cure system > the semi-EV system > the EV system". For short term thermal aging, the change in crosslink density with the aging time was complicated, particularly for low temperature aging. The activation energies of the change in crosslink density with thermal aging using the conventional and semi-EV cure systems increased and then remained relatively constant with increasing aging time, whereas that of the specimen with an EV cure system tended to increase linearly. The experimental results were explained by the dissociation of the existing polysulfidic linkages and the formation of new cross links through the crosslinking-related chemicals remaining in the sample.

THERMAL CHANGE AND MICROHARDNESS IN CURING COMPOSITE RESIN ACCORDING TO VARIOUS CURING LIGHT SYSTEM (광중합기에 따른 복합레진 중합시 온도 변화와 미세경도에 관한 연구)

  • Lee, Dong-Jin;Kim, Dae-Eop;Yang, Yong-Sook;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.391-399
    • /
    • 2004
  • The purpose of this study was to compare curing efficiency of newly developed curing units to traditional halogen curing unit by measuring thermal change and surface microhardness according to curing light system. Materials and mathods : The types of curing units were traditional low intensity halogen light(Optilux 360), plasma arc light(Flipo), low heat plasma arc light(Aurys), low intensity LED(Starlight), and high intensity LED(Freelight2). Temperature at the tip of light guide was measured by a digital thermometer using K-type thermocouple. And after resin was filled to 2, 3, 4mm teflon mold, bottom temperature measured during curing. After 24 hours, microhardness of top surface and bottom surface of each resin specimen were measured. Results : The result of this study can be summarized as follows, 1. As measuring temperature of curing unit tips, Flipo is the highest as $52.4^{\circ}C,\;Freelight2(37.86^{\circ}C),\;Optilux360(32.68^{\circ}C),\;Aurys(32.34^{\circ}C),\;and\;Starlight(26.14^{\circ}C)$ were followed. 2. Flipo and Freelight2 were the highest similarly and Optilux360 and Aurys were similarly next and Starlight was lowest in temperature of bottom surface of resin mold. 3. Microhardness of top surface were generally similar, and Aurys was relatively low. 4. Optilux 360 and Freelight2 were the highest, and Flipo, Starlight, and Aurys were followed in microhardness of bottom surface. Conclusions : The results suggest that careful use of Flipo and Freelight2 might be able to cure greater depth of resin composite and do not cause thermal problems than other curing units.

  • PDF

A numerical study on the residual stress in LED encapsulment silicone considering cure process (경화공정을 고려한 LED 패키징 실리콘의 잔류음력에 대한 수치해석적 고찰)

  • Song, M.J.;Kim, K.B.;Kang, J.J.;Kim, H.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.323-327
    • /
    • 2009
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for both curing and cooling process during silicone molding. For analysis of curing process, a cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the curing as well as the cooling process should be designed carefully so as to reduce the residual stress although the cooling process plays the bigger role than curing process in determining the final residual stress state.

  • PDF