• Title/Summary/Keyword: Thermal coating

Search Result 1,180, Processing Time 0.035 seconds

The Effects of Pattern Coatings on the Solidification of Pure Aluminum Castings and the Thermal Behavior of Molds in FMC Processes (FMC법에서 모형 도형제가 순알루미늄 주물의 응고와 주형의 열적거동에 미치는 영향)

  • Cho, N.D.;Kim, Y.N.
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.122-132
    • /
    • 1987
  • Full mold casting process is a new technique offering numerous advantages and promising possibilities. The present study is aimed to bring out the results of experiments carried out to study the effect of pattern coatings on the solidification of 99.5% pure aluminum plate-shaped castings in the various sand molds and the thermal behavior of the molds. The results of the investigation indicate that (i) with increase in pattern coating thickness, the relative chilling power decreases gradually for silica and increases for zircon coating, and (ii) the application of a pattern coating significantly reduces the maximum interface temperature by the mold which is more pronounced in the case of thinner mold wall. The investigation also indicates that Chvorinov's rule is not found to be valid for the casting in the full mold, with or without pattern coating. Therefore in full mold process, the pattern coating thickness will be a very important parameter in the study of thermal behavior.

  • PDF

Fracture Behavior of Ceramic Coatings Subjected to Thermal Shock (열충격에 의한 세라믹코팅재의 파괴거동)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.39-43
    • /
    • 2003
  • An experimental study was conducted to develop and understanding of fracture behavior of ceramic thermal barrier coating when subjected to a thermal shock loading. The thermal loading was applied using a 1.5kW $CO_2$ laser. In the experiments, beam-shaped specimens were subjected to a high heat flux for 4sec and cooling of 7sec in air. The interface crack length was increased as the crack density, the surface pre-crack legth and the coating thickness were increased. The center surface crack length was increased as the maximum surface temperature got higher and the surface pre-crack length for shorter.

Study on the behavior of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 거동에 관한연구)

  • 이상열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.695-701
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. THe erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated, The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively.

  • PDF

Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel (선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

Investigation of Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.45-50
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustor walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD (전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성)

  • Park, Chanyoung;Yang, Younghwan;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Lim, Daesoon;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.

Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet (Zn-Al-Mg 합금도금강판의 헤어라인 처리가 표면흑색화 및 열확산도에 미치는 영향)

  • Jin Sung Park;Duck Bin Yun;Sang Heon Kim;Tae Yeob Kim;Sung Jin Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • The effects of hairline treatment on surface blackening and thermal diffusion behaviors of Zn-Al-Mg alloy coated steel sheet were evaluated by the three-dimensional surface profiler and laser-flash technique. The metallographic observation of coating damages by hairline treatments showed that several cracks were initiated and propagated along the interface between primary Zn/eutectic phases. As the hairline processing became more severe, the crack occurrence frequency in eutectic phase of coating layer and the surface roughness increased, which had a proportional relationship with the level of blackening on the coating surface. In addition, the higher interfacial areas of the blackened coating surface, caused by the hairline process, led to an increase in thermal diffusivity and conductivity of the coated steel sheet. On the other hand, when the coating damage by hairline treatment was excessive and the steel substrate was exposed, there was little difference between the thermal diffusivity/conductivity of the untreated sample though the blackening degree was higher than that of untreated sample. This work suggests that the increase in the surface areas of the coating layer without exposure to steel substrate through hairline treatment can be one of the effective technical strategies for the development of Zn-Al-Mg alloy coated steel sheets with higher blackening level and thermal diffusivity.