• Title/Summary/Keyword: Thermal bonding method

Search Result 157, Processing Time 0.02 seconds

a-Si:H Photosensor Using Cr silicide Schottky Contact

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.105-107
    • /
    • 2006
  • Amorphous silicon is a kind of optical to electric conversion material with current or voltage type after generating a numerous free electron and hole when it is injected by light. It is very effective technology to make schottky diode by bonding thin film to use optical diode. In this paper, we have fabricated optical diode device by forming chrome silicide film through thermal processing with thin film($100{\AA}$) having optimal amorphous silicon. The optimal condition is that we make a thin film by using PECVD(Plasma Enhanced Chemical Vapor Deposition) to improve reliability and characteristics of optical diode. We have obtained high quality diode by using chrome silicide optical diode from dark current and optical current measurement compared to previous method. It makes a simple process and improves a good reliability.

A Study on Large Area Roll Projection Welding for Metallic Sandwich Plate : Part 2 - Numerical Analysis (금속 샌드위치 판재 대면적 롤 프로젝션 용접에 관한 연구 : Part 2 - 수치 해석)

  • Kim, Jong-Hwa;Ahn, Jun-Su;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.92-96
    • /
    • 2009
  • Metallic sandwich plate has many good properties such as high specific stiffness, high specific strength, good impact absorptivity, effective thermal insulation and soundproofing. In our study, a new bonding method, 3-layer roll projection welding, is introduced to fabricate the metallic sandwich plate. The new method uses a pair of roll electrodes like the seam welding, and projection welding is made at two internal interfaces of the 3-layer weldment consisting of a structured inner sheet and a pair of skin sheets. During the welding process, skin sheet temperature are measured to produce metallic sandwich plate with uniform and good quality. But it is difficult to observe or measure the temperature at the welding points during welding process because the welding points exist at the internal interfaces. Therefore FEM numerical analysis using ABAQUS is conducted to estimate the generated heat at the welding points with different welding conditions.

Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle (재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Lea, Tea-Ung;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.303-308
    • /
    • 2013
  • Carbon fiber (CF) reinforced polypropylene (PP) compositeis was increased to amount consumed. In this study, recycle of composites by recycle times. CF was containing 20%. Mechanical and interfacial propertis of CF/PP was evaluation for number of recycle time. Mechanical assessment of CF/PP was tension, bending, fatigue tension test and izod test method. Interfacial assessment of CF/PP was wettability test and FE-SEM of fracture surface method. Fiber and matrix was changed to recycle time. The more recycle of CF/PP, the more interfacial bonding was decreased. Because fiber and matrix was damaged to thermal damage. And then reinforced CF was shorter than original shape.

The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method. (예비가열법에 의한 폐콘크리트 재생골재의 물성개선)

  • 최현수;김효열;최봉철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

Control of High Pretilt Angle in NLC using a NDLC Thin Film (NDLC 박막을 이용한 네마틱 액정의 고프리틸트 제어)

  • 박창준;황정연;서대식;안한진;김경찬;백홍구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.760-763
    • /
    • 2004
  • We studied the nematic liquid crystaL(NLC) aligning capabilities using the new alignment material of a nitrogenated diamond-like carbon(NDLC) thin film. The NDLC thin film exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) thin films. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. A high pretilt angle of about 9.9$^{\circ}$ by ion beam(IB) exposure on the NDLC thin film surface was measured. A good LC alignment is achieved by the IB alignment method on the NDLC thin films surface at annealing temperature of 200 $^{\circ}C$. The alignment defect of the NLC was observed above annealing temperature of 250 $^{\circ}C$. Consequently, the high pretilt angle and the good LC alignment by the IB alignment method on the NDLC thin film surface can be achieved.

Liquid Crystal Alignment Effects Using a Carbon Nitride Thin Film (Carbon Nitride 박막을 이용한 액정배향 효과)

  • Park, Chang-Joon;Hwang, Jeong-Yeon;Kang, Hyung-Ku;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a Carbon Nitride (NDLC) thin film. NDLC thin film exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) thin films. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. A high pretilt angle of about $9.9^{\circ}$ by ion beam (IB) exposure on the NDLC thin film surface was measured. A good LC alignment is achieved by the IB alignment method on the NDLC thin film surface at annealing temperature of $200^{\circ}C$. The alignment defect of the NLC was observed above annealing temperature of $250^{\circ}C$. Consequently, the high pretilt angle and the good LC alignment by the IB alignment method on the NDLC thin film surface can be achieved.

  • PDF

A study on the brazed bonding of alumina ceramic to aluminum in the air atmosphere (알루미나($Al_2O_3$)세라믹과 알루미늄(A1050)과의 대기중 브레이징 접합에 관한 연구)

  • 최영국;박성현;김윤해;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.50-61
    • /
    • 1995
  • In recent years, many ceramic researchers have discoved various methods of joining ceramic to metal. However, most of these joining methods are perfomed under vacuum and pressured circumstances. So, when we join ceramic to metal,the proceedings are very complicated and require a very high cost. The purpose of this study is to develop a new joining method of an alumina ceramic to an aluminum metal in air atmosphere. The joining condition, such as copper metallizing, nickel plating, brazing, etc. was investigated through the shear strength test of the trial joint. The results obtained from the above experimenta are summarized as follows : 1) In the case of the $Al_2O_3$/$Al_2O_3$joint, the shear strength of the joint was affected by the various foctor such as kaolin content, copper metallizing thickness, firing temperature, firing time. 2) The better shear strength of the $Al_2O_3$/Al joint was obtained when Ni plating was conducted under higher current density than existing plating condition. 3) The shear strength of the $Al_2O_3$/Al joint increases with the Ni plating thickness is confined to the range of this paper. 4) The shear strength of the thermal-shocked specimen($Al_2O_3$/Al joint) was far more deteriorated than that of the as-bonded specimen.

  • PDF

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Characterizing Residual Stress of Post-Heat Treated Ti/Al Cladding Materials Using Nanoindentation Test Method (나노압입시험법을 이용한 후열처리된 Ti/Al 클래딩재의 잔류 응력 평가)

  • Sang-Kyu Yoo;Ji-Won Kim;Myung-Hoon Oh;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Ti and Ti alloys are used in the automobile and aerospace industries due to their high specific strength and excellent corrosion resistance. However their application is limited due to poor formability at room temperature and high unit cost. In order to overcome these issues, dissimilarly jointed materials, such as cladding materials, are widely investigated to utilize them in each industrial field because of an enhanced plasticity and relatively low cost. Among various dissimilar bonding processes, the rolled cladding process is widely used in Ti alloys, but has a disadvantage of low bonding strength. Although this problem can be solved through post-heat treatment, the mechanical properties at the bonded interface are deteriorated due to residual stress generated during post-heat treatment. Therefore, in this study, the microstructure change and residual stress trends at the interfaces of Ti/Al cladding materials were studied with increasing post-heat treatment temperature. As a result, compared to the as-rolled specimens, no difference in microstructure was observed in the specimens after postheat treatment at 300, 400, and 500℃. However, a new intermetallic compound layer was formed between Ti and Al when post-heat treatment was performed at a temperature of 600℃ or higher. Then, it was also confirmed that compressive residual stress with a large deviation was formed in Ti due to the difference in thermal expansion coefficient and modulus of elasticity between Ti Grade II and Al 1050.