• Title/Summary/Keyword: Thermal and electric conductivity

Search Result 174, Processing Time 0.023 seconds

Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL) (전기이중층에 의한 나노유체의 열전달율 향상)

  • Jung, Jung-Yeul;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

Experimental investigation on the variation of thermal conductivity of soils with effective stress, porosity, and water saturation

  • Lee, So-Jung;Kim, Kyoung-Yul;Choi, Jung-Chan;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.771-785
    • /
    • 2016
  • The thermal conductivity of soils is an important property in energy-related geotechnical structures, such as underground heat pumps and underground electric power cable tunnels. This study explores the effects of geotechnical engineering properties on the thermal conductivity of soils. The thermal conductivities of quartz sands and Korean weathered silty sands were documented via a series of laboratory experiments, and its variations with effective stress, porosity, and water saturation were examined. While thermal conductivity was found to increase with an increase in the effective stress and water saturation and with a decrease in porosity, replacing air by water in pores the most predominantly enhanced the thermal conductivity by almost one order of magnitude. In addition, we have suggested an improved model for thermal conductivity prediction, based on water saturation, dry thermal conductivity, saturated thermal conductivity, and a fitting parameter that represents the curvature of the thermal conductivity-water saturation relation.

The Electric and Thermal Properties of Spark Plasma Sintered Bi0.5Sb1.5Te3 (방전플라즈마 소결된 Bi0.5Sb1.5Te3의 열/전기적 특성)

  • Lee, Gil-Geun;Choi, Young-Hoon;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2012
  • The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic crystal structure. The c-axis of the $Bi_{0.5}Sb_{1.5}Te_3$ crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic characteristics result from crystal alignment.

Studies on Thermal Conductivity and Electric Resistance Properties of Microflute Corrugated Paperboard (마이크로플루트 골판지의 열전도도 및 전기저항 특성에 대한 연구)

  • Um, Gi-Jeung;Cho, Yong-Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.45-53
    • /
    • 2007
  • When micro flute corrugated paperboards are used for food packaging, they necessarily need to meet the requirements for the distribution, transportation, and storage of food. The requirements could vary ac-cording to the contents in the packaging boxes. Microflute corrugated packaging paperboard for hot foods such as just-made coffee and hamburger requires to have a decent resistance property against high temperature. Along with a recent trend for small-quantity-multi-item upgraded packaging, semiconductor products and consumer-electronic appliances become to be packed using the environmental friendly micro flute corrugated paperboard. In this case, the electric resistance property of the microflute corrugated paperboard becomes important. This study was carried out to investigate on the thermal conductivity and electric resistance properties of micro flute corrugated paperboard.

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

Thermal Conductivity Measurement of Insulation Material for Superconducting Application

  • Chol, Y.S.;Kim, D.L.;Shin, D.W.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.29-32
    • /
    • 2011
  • The thermal properties of insulation material are essential to develop a high-temperature superconducting (HTS) power cable to be operated at around liquid nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore special attention needs to be paid to estimate heat flow correctly. Thus, we have developed a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range from 40 K to near room temperature using a cryocooler. Firstly, the measurement of thermal conductivity for Teflon is carried out for accuracy confirmation. For a supplied heat flux, the temperature difference between warm and cold side is measured in steady state, from which the thermal conductivity of Teflon is calculated and compared with published result of NIST. In addition, the apparent thermal conductivity of Polypropylene laminated paper (PPLP) is presented and its temperature dependency is discussed.

Effect of Carbonization Temperature on the Thermal Conductivity and Electric Properties of Carbonized Boards (탄화온도가 탄화보드의 열전도율 및 전기적 성질에 미치는 영향)

  • Oh, Seung-Won;Park, Sang-Bum;Kim, Jong-In;Hwang, Jung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • This study is a basic research for practical applications of carbonized boards, which measured thermal conductivity and electrical properties of carbonized boards manufactured at different carbonization temperature ($400{\sim}1,100^{\circ}C$) using a medium density fiberboard, particleboard, plywood and wood (Fraxinus rhynchophylla). The highest value of thermal conductivity was 0.1326 m/k at carbonization temperature of $900^{\circ}C$ in the carbonized particleboard. Overall, the higher density of carbonized board, thermal conductivity was faster. As the electrical resistivity decreased with increased carbonization temperature, it was almost close to conductor after carbonization temperature of $1,000^{\circ}C$. When electricity has worked on the carbonized board by high voltage, the current and the electric power increased and surface temperature of carbonized board was high.

Study of Thermal Conductivity and Mechanical Property of Elastic Epoxy (탄성형 에폭시의 열전도율 및 기계적 특성에 대한 연구)

  • Lee, Kwan-Woo;Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.319-322
    • /
    • 2004
  • In this paper, we studied on the thermal conductivity and a mechanical property of the elastic epoxy. According to industrial development, insulation materials have various properties. They are solid, liquid, gas state, there are various type. Epoxy, a kind of insulation material, demand of not only high hardness but also elastic property. When the electric current flows into the conductor and the place where the heat occurs, this heat becomes the cause which shortens the life of the electrical appliance. Therefore, for the heat occurred transmit quickly, thermal conductivity of the insulation material is highly demanded. We studied on the thermal conductivity of elastic epoxy on the high voltage. In this result, thermal conductivity confirmed that it followed thermal property of mixed epoxy and addictives. Hardness is decreased when addictives increased.

  • PDF

Preparation and Heat Transfer Properties of Nanoparticle-in-Transformer Oil Dispersions as Advanced Energy-efficient Coolants (고효율 냉각용 나노분말/절연유 분산액의 제조 및 열전달특성)

  • Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.81-82
    • /
    • 2006
  • The purposes of the present study are to produce a high thermal efficient of oil-based nanofluids which can be used as ultra-high voltage transformer oil, and to investigate their thermal and physical properties under static and dynamic conditions. Three kinds of nanofluids are prepared by dispersing $Al_2O_3$ or AlN nanoparticles in transformer oil. The thermal conductivities of the nanoparticles-oil mixtures increase with temperature, particle volume concentration and thermal conductivity of solid particle itself. It was quite important to eliminate $H_2O$ as byproducts of esterification and excess oleic acid which did not form stable chemical bonds with powder surface to get high dispersion stability.

  • PDF

Effect of Si Addition on Microstructure, Mechanical Properties and Thermal Conductivity of the Extruded Al 6013 Alloy Systems

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Lee, Byoung-Kwon;Ko, Eun-Chan;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.403-407
    • /
    • 2022
  • This research investigated the effect of Si addition on the microstructure, mechanical properties, electric and thermal conductivity of as-extruded Al 6013 alloys. As the content of Si increased, the area fraction of the second phase increased. As the Si content increased, the average grain size decreased remarkably, from 182 (no Si addition) to 142 (1.5Si), 78 (3.0Si) and 77 ㎛ (4.5Si) due to dynamic recrystallization by the dispersed second particles in the aluminum matrix during the hot extrusion. As the Si content increased, the yield strength and ultimate tensile strength increased. The maximum values of yield strength and ultimate tensile strength were 224 MPa and 103 MPa for the 6013-4.5Si alloy. As the amount of Si added increased, the electrical and thermal conductivity decreased. The electrical and thermal conductivity of the Al6013-4.5Si alloy were 44.0 % IACS and 165.0 W/mK, respectively. The addition of Si to Al 6013 alloy had a significant effect on its thermal conductivity and mechanical properties.