DOI QR코드

DOI QR Code

방전플라즈마 소결된 Bi0.5Sb1.5Te3의 열/전기적 특성

The Electric and Thermal Properties of Spark Plasma Sintered Bi0.5Sb1.5Te3

  • 이길근 (부경대학교 신소재시스템공학과) ;
  • 최영훈 (부경대학교 신소재시스템공학과) ;
  • 하국현 (한국기계연구원부설재료연구소)
  • Lee, Gil-Geun (Department of Materials System Engineering, Pukyong National University) ;
  • Choi, Young-Hoon (Department of Materials System Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Korea Institute of Materials Science)
  • 투고 : 2012.06.26
  • 심사 : 2012.08.05
  • 발행 : 2012.08.28

초록

The present study was focused on the analysis of the electric and thermal properties of spark plasma sintered $Bi_{0.5}Sb_{1.5}Te_3$ thermoelectric material. The crystal structure, microstructure, electric and thermal properties of the sintered body were evaluated by measuring XRD, SEM, electric resistivity, Hall effect and thermal conductivity. The $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic crystal structure. The c-axis of the $Bi_{0.5}Sb_{1.5}Te_3$ crystal aligned in a parallel direction with applied pressure during spark plasma sintering. The degree of the crystal alignment increased with increasing sintering temperature and sintering time. The electric resistivity and thermal conductivity of the $Bi_{0.5}Sb_{1.5}Te_3$ sintered body showed anisotropic characteristics result from crystal alignment.

키워드

참고문헌

  1. A. Majumdar: Sci., 303 (2004) 777. https://doi.org/10.1126/science.1093164
  2. C. B. Vining: Nature, 413 (2001) 577. https://doi.org/10.1038/35098159
  3. B. C. Sales: Sci., 295 (2002) 1248. https://doi.org/10.1126/science.1069895
  4. K. Uemura and I. Nishida: Thermoelectric Semiconductor and its Application, Nikkankougyo Shinbunsya, Tokyo (1985) 13 (Japanese).
  5. H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York (1995) 211.
  6. A. M. Rao, X. Ji and T. M. Tritt: MRS Bull., 31(2006) 218. https://doi.org/10.1557/mrs2006.48
  7. B. Poudel, Q. Hao, J. Liu and M. S. Dresselhaus: Sci., 320 (2008) 634. https://doi.org/10.1126/science.1156446
  8. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580. https://doi.org/10.1021/nl8009928
  9. G. G. Lee, S. H. Kim, G. H. Ha and K. T. Kim: J. Kor. Powder Metall. Inst., 17 (2010) 336 (Korean). https://doi.org/10.4150/KPMI.2010.17.4.336
  10. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt: Appl. Phys. Lett., 94 (2009) 102111. https://doi.org/10.1063/1.3097026
  11. ASM International Handbook Committee: ASM Handbook Vol.7 Powder Metal Technologies and Applications, ASM International, New York (1998) 583.
  12. L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang and W. S. Liu: Solid State Sci., 10 (2008) 651. https://doi.org/10.1016/j.solidstatesciences.2007.10.022
  13. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke and H. Weller: Adv. Funct. Mater., 19 (2009) 3476. https://doi.org/10.1002/adfm.200901261
  14. Y. J. Kim, C. G. Kim, C. J. Kim and S. L. Lee: Metallographie, Hak Mun Publishing Co., Seoul (1996) 53 (Korean).
  15. X. D. Liu and Y. H. Park: Mater. Trans., 43 (2003) 681.
  16. P. Pecheur and G. Toussaint: J. Phys. Chem. Solids, 53 (1992) 1067. https://doi.org/10.1016/0022-3697(92)90079-S
  17. R. Ionescu, J. Taklouszky, N. Nistor and A. Chiculita: Phys. Status Solids A, 27 (1975) 27. https://doi.org/10.1002/pssa.2210270103
  18. J. Horak, K. Cermak and L. Koudelka: J. Phys. Chem, Solids, 47 (1986) 805. https://doi.org/10.1016/0022-3697(86)90010-7
  19. H. Scherrer and S. Scherrer: CRC Handbook of Thermoelectrics, D. M. Rowe (Ed.), CRC Press, New York (1995) 233.
  20. K. W. Cho and I. H. Kim: Mater. Lett., 59 (2005) 966. https://doi.org/10.1016/j.matlet.2004.10.074
  21. R. Srinivasan, N. Gothard and J. Spowart: Mater. Lett., 64 (2012) 1772.
  22. S. S. Kim and T. Aizawa: Met. & Mater., Inter., 12 (2006) 317. https://doi.org/10.1007/BF03027548