• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.031 seconds

Experimental Thermal Analysis of Hydraulic System in a Special Vehicle (특장차량 유압시스템 내 열적 특성 분석)

  • Choi, Yu Hyun;Lee, Sang Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from $20^{\circ}C$ to $80^{\circ}C$. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near $50^{\circ}C$. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Hwang, D.Y.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.135-144
    • /
    • 2009
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

  • PDF

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 2010
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

Characteristics of Carbonaceous Aerosols Measured at Gosan - Based on Analysis of Thermal Distribution by Carbon Analyzer and Organic Compounds by GCMS (제주도 고산지역 탄소 성분의 특성 분석 - 유기탄소의 열광학적 특성 및 유기성분 중심으로)

  • Bae, Min-Suk;Park, Seung-Shik;Kim, Young Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.722-733
    • /
    • 2013
  • Ground-based measurements were conducted from August 25 to September 8 of 2011 for understanding characteristics of carbonaceous aerosols measured at Gosan. Chemical components and their sources were discussed by analysis of organic compounds with identification of primary and secondary products in particulate matter. Thus, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. In addition, organic compounds by gas chromatography technique with the backward trajectories were discussed for characteristics of carbonaceous aerosols. Different air-masses were classified related to the OC thermal signatures and the organic molecular markers such as aromatic acids and PAHs. We concluded that the aging process was influenced by the long-range transport from East Sea area.

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Power Loss and Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle according to the Rated Power-Speed (공작기계 스핀들용 유도전동기의 용량-속도에 따른 손실 및 발열특성 해석)

  • Seong, Ki-Hyun;Cho, Han-Wook;Hwang, Joo-Ho;Shim, Jong-Yeob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1668-1677
    • /
    • 2013
  • This paper deals with the power loss and thermal characteristics of induction motor for machine tools according to the rated power and speed. To reduce the fabrication error by thermal strain in rotational machine tools, we calculated the power loss and thermal behavior of induction motors. Firstly, the inverse design of general induction motors for machine tool spindle has been performed. The inverse design results are compared with the torque-speed characteristic curve in motor's catalog. The power loss are calculated by finite element method(FEM) at rated condition. Secondary, the transient thermal characteristics of induction motors are calculated by equivalent thermal resistance model from Motor-CAD S/W. The inverse design, power loss and thermal behavior calculation for induction motors with various rated power and speed has been performed. Finally, to verify the design and calculation process of induction motor, we implemented the experimental set with 0.4kW 1710rpm class industrial induction motor model. The obtained thermal characteristics of experimental model confirmed that the design and power loss calculation processes are appropriate to the prediction of thermal strain in rotational machine tools.

A Study on the Thermohydrodynamic characteristics of Journal Bearing (저어널 베어링의 열류체역학적 특성에 대한 연구)

  • 김용섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.59-70
    • /
    • 1991
  • Rupture of lubricant film, thermal characteristics, and variation of viscosity are very important factors to evaluate the performance of journal bearing. Variation of external conditions, load or rotational speed, largely influence these facters. For example, if rotational speed increases lubricant bulk temperature increases and viscosity drops. In this paper the effect of rotational speed variation on the characteristics of lubricant film in a journal bearing is investigated by experiment and theoretical analysis. It has been measured number of lubricant film rupture and lubricant bulk temperature form journal bearing which have been established at the various operating speed of shaft. The range of speed variation is from 900rpm to 2100rpm. Theoretical analysis has been carried out for rupture of lubricant film and thermal characteristics, and these results are compared with experimental results.

  • PDF

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

The improvement of control strategy in thermal power plant turbine system by nonlinear analysis (비선형성 해석에 의한 화력발전소 터어빈 제어계통에 관한 연구)

  • ;;Hwang, Jae-Ho;Seo, Jin-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.567-571
    • /
    • 1989
  • This paper describes the improvement of thermal power plant turbine control system by analyzing nonlinear characteristics. The turbine control depends on the frequency variation and boiler condition. The nonlinearity of turbine control is the result of governor/valve properties, steam condition and boiler thermal unbalance. Nonlinear analysis is divided into two; main steam valve position - turbine output anal governor response. Of course, every analysis must be done on considering plant operating condition. In this paper, after analyzing turbine control nonlinearity by numerical method and actual results, the sensitive operating load which corresponds to frequency is proposed, on guarranteed boiler stability. This idea is implemented at Pyung Tack thermal power plant, and the practical results are showed.

  • PDF

Evaluation of Quality of Ginger Oleoresin by Thermal Analysis (열분석에 의한 생강엑기스의 품질평가)

  • Shin, Ae-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.229-233
    • /
    • 1990
  • The thermal analysis method has been proposed for the evaluation of the relative qualities of different ginger oleoresin samples and discussed to demonstrate its simple applicability. TGA measurement to compare characteristics of ginger oleoresins give more sensitive indication on the thermal decomposition than that of DSC. The results show that the quality of oleoresin obtained from sliced sun dried ginger is better than that from hot air dried whole ginger.

  • PDF