제주도 고산지역 탄소 성분의 특성 분석 - 유기탄소의 열광학적 특성 및 유기성분 중심으로

Characteristics of Carbonaceous Aerosols Measured at Gosan – Based on Analysis of Thermal Distribution by Carbon Analyzer and Organic Compounds by GCMS

배 민 석*·박 승 식¹⁾·김 영 준²⁾

목포대학교 환경공학과, ¹⁾전남대학교 환경공학과, ²⁾광주과학기술원 환경공학과 (2013년 5월 10일 접수, 2013년 7월 21일 수정, 2013년 7월 29일 채택)

Min-Suk Bae*, Seung-Shik Park¹⁾ and Young Joon Kim²⁾ Department of Environmental Engineering, Mokpo National University ¹⁾Department of Environmental Engineering, Chonnam National University ²⁾Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) (Received 10 May 2013, revised 21 July 2013, accepted 29 July 2013)

Abstract

Ground-based measurements were conducted from August 25 to September 8 of 2011 for understanding characteristics of carbonaceous aerosols measured at Gosan. Chemical components and their sources were discussed by analysis of organic compounds with identification of primary and secondary products in particulate matter. Thus, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. In addition, organic compounds by gas chromatography technique with the backward trajectories were discussed for characteristics of carbonaceous aerosols. Different airmasses were classified related to the OC thermal signatures and the organic molecular markers such as aromatic acids and PAHs. We concluded that the aging process was influenced by the long-range transport from East Sea area.

Key words : Organic, Organic compounds, OC, EC

*Corresponding author.

Tel: +82-(0)61-450-2485, E-mail: minsbae@mokpo.ac.kr

1. 서 론

대기 중 입자상 분진(particulate matter, PM)의 주 요한 구성 성분(10~70%)으로 알려진 탄소성 유기 분진(carbonaceous organic aerosols)은 그 화학적 성 상이 아직 완벽하게 밝혀지지 않았지만, 시정거리 (visibility) 감소, 기후 강제력(climate forcing) 등의 변 화에 크게 기여하고, 인체에 악영향을 미치는 것으로 알려져 있다(Rattigan et al., 2010; Hopke, 2009; Leck et al., 2002; Jacobson, 2001; Raes et al., 2000). 탄소와 수소의 공유결합으로 구성된 유기분진은 탄소, 수소, 산소, 질소로 이루어져 있으며, 보편적인 측정 분석 기술로 이 중 탄소의 무게만을 측정하며, 이를 총탄 소(total carbon, TC)라 명명하고 있다. 이와 같은 이유 로 총탄소의 무게와 총유기 분진(organic matter, OM) 의 무게 비율(OM/OC)에 대한 연구가 오래전부터 활 발히 진행되어 왔다(Turpin and Lim, 2001). 총탁소는 수천종의 단일 유기화학종을 포함하며, 이를 크게 유 기탄소 (organic carbon, OC)와 원소탄소 (elemental carbon, EC)로 구분한다 (Bae et al., 2004a). 원소탄소 는 대부분 연소과정에서 발생되는 일차 오염 물질 (primary material)이다. 주로 바이오매스 연소(biomass burning), 석탄 및 디젤 연소에서 검댕 (soot)의 형태로 배출된다 (Mader et al., 2003). 또한 원소탄소 는 대기에서의 태양복사를 흡수하여 지구 온난화를 가중시키는 것으로 보고되고 있다 (Ramanathan and Carmichael, 2008). 유기탄소의 주요 원인으로는 화석 연료의 연소, 내화 연료와 윤활유, 산업적 배출, 공장 배출 물질 (plant matter), 바이오매스 연소 등에 의한 일차 유기분진과, 광화학적 반응에 의한 이차 유기분 진 등 다양한 배출원을 통해 직접 배출 또는 생성된 다. 유기탄소는 다시 수용성탄소(water-soluble organic carbon, WSOC)와 불용성탄소로 나눌 수 있다(Park and Cho, 2011; Jaffrezo et al., 2005). 이 중 수용성탄 소와 관련된 수용성 유기분진은 주로 휘발성 유기화 합물(volatile organic compounds, VOCs)이 기존의 입 자에 응결(condensation)되거나 핵(nucleation)을 형성 하는 산화과정에 의해 생성된 이차 유기분진을 포함 한다. 또한 흡수성에 의한 구름 응결핵(cloud condensation nuclei, CCN)으로 작용하기도 한다. 이 밖에 일 차 유기분진으로써의 수용성 유기분진인 레보글루코 산 (levoglucosan, 1,6-anhydro-β-D-glucose, Mnemonic: LEVOG in 표 1)이 있다(Bae et al., 2012). LEVOG은 가장 효과적인 단일 지시자 (single tracer)로 알려져 있는데, 그 이유는 자동차 배기가스 및 산업적 배출 의 영향을 받지 않을 뿐만 아니라 난분해성이기 때문 이다 (Simoneit et al., 1999). 이러한 이유로 LEVOG 을 포함하는 유기분진의 개별 분석은 유기분진의 원 인을 좀 더 명확히 분석하는데 매우 중요하다.

유기분진을 측정 및 분석 할 수 있는 기술은 매우 다양하며, 이를 분석 할 수 있는 기술은 계속 발전하 고 있다. 하지만 대기환경에 존재하는 모든 유기 화 학종에 대한 정량 정성 분석을 할 수 있는 단일 분석 기술은 현재 존재하고 있지 않다. 이를 그림 1에 간 략히 나타내었다 (AMS: Aerosol Mass Spectrometer, CI, EA: Chemical Ionization & Electron Attachment, ECOC: Organic Carbon Elemental Carbon, FTIR: Fourier Transform Infrared Spectroscopy, GCMS: Gas Chromatography Mass Spectrometer, 2D-GCMS: 2 dimensional Gas Chromatography Mass Spectrometer, HR-Tof-AMS: High Resolution time of flight Aerosol Mass Spectrometer, NMR: Nuclear Magnetic Resonance, PBTDMS: Particle Beam Thermal Desorption Mass Spectrometer, PILS-OC: Particle-into-liquid-sampler -Organic Carbon, VUV: Vacuum Ultraviolet). 각각의 분석법은 전체 유기분진의 질량 농도 분석 및 유기 분진의 개별 유기 화학종 분석 측면에서 살펴 볼 때, 다른 분석 특성을 가지고 있다. 예를 들어 OCEC, AMS 측정법은 유기분진의 총 질량을 분석하는 측면 에서는 매우 유용하지만, 개별 유기 화학종 분석 측 면에서 매우 취약하다. 반면에 GCMS, 2D-GCMS 분 석법의 경우 개별 화학종 분석 측면에서 매우 좋은 분석법이지만, 전체 유기질량의 20~40%만을 분석할 수 있다. 이에 각 분석법의 장단점을 고려하여 어느 측면에서 접근할 것인가 판별하는 것은 분석 후 유 기분진에 대한 데이터 결과해석의 정도를 결정한다 고 해도 과언이 아니다. 이에 대기 입자상 분진 중 유기분진에 대한 총 질량 농도 분석 및 개별 화학종 과의 관계를 고려하여 대기환경의 원인을 이해하는 것은 매우 중요하다고 할 수 있다. 큰 틀에서 대기 중 유기분진에 대한 일차 및 이차 분진을 구분하는 것 과 동시에, 화학적 성분 분석을 통하여 원인을 명확 히 밝히고, 이를 대기 질량 농도 측면에서의 대기 기 여도 등 직접적으로 활용할 수 있기 때문이다.

이에 대기 중 입자상 분진 중 탄소성 유기분진을 연구하고자 제주도 고산에서 2011년 탄소측정기를 이용하여 분석된 유기탄소 및 원소탄소의 열광학 분 포 해석과 GCMS를 이용한 개별 유기분진의 농도를 일산화탄소 및 대기 기류와 비교 분석함으로 유기물

724 배민석·박승식·김영준

Table 1. Coefficient of determination (r ²), analytical recovery, and level of field blank related to the orga	anic compounds
in particulate matter.	

Compounds (ng/m ³)	Mnemonic	r ²	% Recovery	Field Blk 01	Field Blk 02	Field Blk 03
Levoglucosan	LEVOG	0.999	123.75	15.46	7.82	6.97
Polyaromatic Hydrocarbons						
Benzo(b)fluoranthene	BBFRN	1.000	117.51	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	BKFRN	1.000	118.78	< 0.05	< 0.05	< 0.05
Benzo(e)pyrene	BEPRN	1.000	122.59	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	BAPRN	1.000	77.78	< 0.05	< 0.05	< 0.05
Perylene	PERYL	1.000	<u>24.48</u>	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	ICDPY	0.999	98.31	< 0.05	< 0.05	< 0.05
Benzo(GHI)perylene	BGHPE	1.000	114.18	< 0.05	< 0.05	< 0.05
Dibenz(ah)anthracene	DBAAN	1.000	119.16	< 0.05	< 0.05	< 0.05
Picene	PICEN	1.000	113.42	< 0.05	< 0.05	< 0.05
Coronene	CORON	1.000	111.20	< 0.05	< 0.05	< 0.05
Dibenzo(ae)pyrene	DBAPY	1.000	116.60	< 0.05	< 0.05	< 0.05
Hopanes						
17A(H)-22.29.30-Trisnorhonane	ATNHO	1,000	103.83	< 0.05	< 0.05	< 0.05
17B(H)-21A(H)-30-Norhonane	BANHO	0.999	105.83	< 0.05	< 0.05	< 0.05
17A(H)-21B(H)-Hopane	ABHOP	1.000	113.32	< 0.05	< 0.05	< 0.05
n_Alkanes						
Tricosane	TRCOS	0 000	122.36	< 0.05	< 0.05	< 0.05
Tetracosane	TTCOS	0.999	122.50	< 0.05	0.32	< 0.05
Pentacosane	PTCOS	0.000	118.88	0.82	1.08	< 0.05
Hexacosane	HYCOS	0.999	117.56	0.64	1.08	0.01
Hentacosane	HTCOS	0.000	117.30	0.36	1.21	0.07
Ostasosana	OTCOS	1.000	115.51	1.05	2.10	0.07
Nenecosane	NNCOS	1.000	115.70	1.95	2.10	0.38
Triacontana	TRCON	1.000	121.84	0.90	2.00	0.78
Hacolitale	ITCON	1.000	121.04	1.52	2.33	1.41
Detrissentene	DTCON	1.000	119.58	1.29	2.20	1.70
Dotriacontane	TRON	1.000	118.21	1.52	2.11	1.98
Tetratriacontane	TECON	1.000	118.17	1.14	1.59	1.50
Tetratriacontaile	TECON	1.000	115.52	1.34	1.77	1.70
n-Alkanoic Acids	FFGG 4			0.40		
Eicosanoicacid	EICSA	0.999	105.33	0.13	1.16	< 0.05
Heneicosanoic acid	HNCSA	0.999	105.33	< 0.05	< 0.05	< 0.05
Docosanoicacid	DOCSA	0.999	102.43	0.19	0.83	< 0.05
Tricosanoic acid	TRCSA	0.999	102.43	0.13	0.43	< 0.05
Tetracosanoicacid	TTCSA	0.999	104.48	0.75	2.56	0.12
Pentacosanoic acid	PTCSA	0.999	104.48	0.14	0.50	< 0.05
Hexacosanoic acid	HXCSA	0.999	104.48	0.24	0.84	0.17
Heptacosanoic acid	HTCSA	0.999	104.48	< 0.05	0.08	< 0.05
Octacosanoicacid	OTCSA	0.999	107.17	< 0.05	1.03	< 0.05
Nonacosanoic acid	NNCSA	0.999	107.17	< 0.05	< 0.05	< 0.05
Triacontanoicacid	TRCSA	0.998	104.30	< 0.05	1.11	< 0.05
Aromatic acids						
Dehydroabieticacid	DHABA	0.998	105.86	< 0.05	0.01	< 0.05
7-oxodehydroabietic acid	ODHAA	0.998	105.86	< 0.05	< 0.05	< 0.05
Phthalicacid	PHTHA	0.999	101.29	0.60	0.63	16.54
Isophthalicacid	IPHTA	1.000	103.39	< 0.05	< 0.05	< 0.05
Terephthalicacid	TPHTA	1.000	105.63	0.39	0.19	< 0.05
Methylphthalicacid	MPHTA	1.000	105.47	0.30	< 0.05	< 0.05
1,2,4-Benzenetricarboxylicacid	124BCA	1.000	88.68	1.18	0.55	0.45
1,2,3-Benzenetricarboxylicacid	123BCA	1.000	94.66	< 0.05	< 0.05	< 0.05
1,3,5-Benzenetricarboxylicacid	135BCA	1.000	<u>150.51</u>	< 0.05	< 0.05	< 0.05
1,2,4,5-Benzenetetracarboxylicacid	TRBCA	1.000	<u>33.97</u>	0.67	< 0.05	< 0.05

한국대기환경학회지 제 29 권 제 6 호

Fig. 1. Analytical Technique for organic compounds (AMS: Aerosol Mass Spectrometer, CI, EA: Chemical Ionization & Electron Attachment, ECOC: Organic Carbon Elemental Carbon, FTIR: Fourier Transform Infrared Spectroscopy, GCMS: Gas Chromatography Mass Spectrometer, 2D-GCMS: 2 dimensional Gas Chromatography Mass Spectrometer, HR-Tof-AMS: High Resolution time of flight Aerosol Mass Spectrometer, NMR: Nuclear Magnetic Resonance, PBTDMS: Particle Beam Thermal Desorption Mass Spectrometer, PILS-OC: Particle-into-liquid-sampler-Organic Carbon, VUV: Vacuum Ultraviolet).

질의 생성과 원인을 논의하고자 한다.

2. 실험 방법

2.1 관측지점

제주도는 한반도와 약 100 km, 중국 상해에서 동북 쪽으로 약 500 km, 일본 큐슈와는 250 km 정도 떨어 져 있는 지역이다. 그리고 제주도는 동아시아 내륙에 서 대양으로 이동하는 대기의 이동경로 중심에 위치 하고 있어서 동아시아 지역 대기 물질의 장거리 이 동현상을 규명하기에 아주 적합한 지리적, 환경적 조 건을 갖추고 있다. 남동아시아의 대표적인 배경농도 모니터링 지역으로 2001년에 설립된 고산측정소는 제주도의 서쪽 끝 지점인 제주특별자치도 제주시 한 경면 고산리 소재 수월봉(33.29°N, 126.16°E)의 높 이 72 m(해수면) 해안가 언덕에 위치하고 있고, 제주 고층 레이더 기상대로부터 서쪽 방향으로 약 300 m 정도 떨어져 있다. 이와 같은 지리적 장점과 함께 지 난 10여 년 동안 장거리 이동 등 많은 연구가 진행 되어 왔다(Stone *et al.*, 2011; Schauer *et al.*, 2003).

2.2 측정방법

2.2.1 유기 탄소 및 원소 탄소

유기 탄소 및 원소 탄소 측정 및 분석을 위하여 준 실시간 탄소분석기 (Semi-continuous OCEC Carbon Aerosol Analyzer, Sunset laboratory Inc.)를 이용하였 다. 준 실시간 탄소분석기는 NIOSH5040 (National Institute of Occupational Safety & Health) 프로토콜 (protocol)을 기초로 한 열광학적 투과도법을 이용한 다 (Bae et al., 2004a). 간략히 대기 분진을 45분간 다 채널 평행판 디누더 (multichannel parallel plate)를 거 쳐 오븐 내에 위치한 석영필터에 포집한다. 다채널 평행판 디누더 안의 탄소 함침 필터를 통과하면서 휘 발성 유기성 유기화합물을 흡수시켜 제거한다(Mader et al., 2003). 포집한 분진은 NIOSH5040 프로토콜에 의거, 승온과정을 거쳐 오븐내 He 상태에서 유기탄소 와 O2 상태에서 원소탄소를 필터로부터 증기화 한다. 이후, 산화과정을 거쳐 이산화탄소로 산화한다. 이산 화탄소는 NDIR (nondispersive infrared) 검출기로 측 정하게 된다. 이때 장치 내 레이저 투과도에 따른 필 터 색을 모니터링하여 필터에 포집된 유기 탄소 및 원소 탄소의 분리점 (split time) 결정한다. 준 실시간 탄소분석기는 매 분석 종료 시마다 내부 표준물질 (internal standard)인 메탄 혼합 가스(5% CH₄ in He) 를 주입하여 최종 분석 농도를 자동적으로 보정한다. 또한 외부표준물질인 sucrose을 이용하여 내부 표준 물질의 정확도를 재차 분석하였다. 분석기 입구에 테 플론 필터를 장착하여 바탕 탄소 농도 측정하여 농 도 보정을 하였으며, 바탕 탄소 평균 농도와 이 결과 를 기반으로 3o 값을 검출한계로 결정하였다. 이에 유 기 및 원소 탄소의 검출한계는 각각 0.5 µgC cm⁻²로 나타났다.

2.2.2 일산화탄소

일산화탄소의 분석은 미량 일산화탄소 가스 분석 기 (trace level CO gas analyzer, Model 48C; Thermo, USA)를 이용해 5분마다 측정하였다. 분석원리는 일 산화탄소 분자의 적외선 흡수에 기초한다. NDIR 분 석기는 일산화탄소가 적외선흡수 스펙트럼을 충분히 가지고 있다는 원리를 이용하여 대기 중 일산화탄소 를 측정하였다.

2.2.3 유기성분

유기성분을 포함하는 분진을 포집하기 위해서 고 용량공기포집기 (KNJ Engineering, Inc., Model 610)를 이용하였다. 석영필터 (Pallflex, 8 × 10 inches)를 이용 하여 1.16 m³ min⁻¹, 8시간 간격 (0:00~8:00, 8:00~ 16:00, 16:00~24:00)으로 8월 30일 0:00부터 9월 8 일 0:00시까지 총 27개의 PM_{2.5} 분진 샘플을 포집하 였다. 유기성분 분석을 위해 분석한 3가지 기류와 관 련된 기간 동안의 샘플을 혼합하여 분석하였다. 이에 5개의 혼합 표준시료, 1개의 회수율 시료, 3개의 필드 공시료를 포함하여 총 12개의 샘플을 분석하였다.

유기성분 분석은 미국 매디슨 소재 위스콘신 주립 대학교 (University of Wisconsin-Madison)에서 유기 용매 추출 및 GCMS분석을 하였고, 유기 질량이온 (m/z)의 데이터 추출에 따른 최종 유기 질량 농도 계 산은 국립목포대학교에서 수행하였다. 추출 방법은 먼저 포진한 필터를 플라스크에 넣은 후, 내부 표준 물질 (internal standard)로 cholesterol-d6를 포함하여 pyrene-d10, benzo(a)anthracene-d12, coronene-d12, cholestane-d4, pentadecane-d32, eicosane-d42, tetracosane-d50, tricontane-d62, dotriacontane-d66, hexatriacontane-d74, decanoic acid-d19, tetradecanoic acid-d27, heptadecanoic acid-d33, eicosanoic acid-d39, tetracosanoic acid-d59, 그리고 decanedioic acid-d16을 첨가 한다. 필터에 포집된 유기성분 분석 대상물질을 추출 하기 위해 디클로로메탄(dichloromethane, 250 mL)과 아세톤(aceton, 250 mL)을 각각 50:50 비율로 속실렛 을 이용하여 추출하였다. 추출된 용액은 회전 농축기 (rotary evaporator)를 이용해 2.5 mL까지 농축시킨 후, 테플론 시린지 필터 (PTFE syringe filter)로 여과하여 시약병에 담는다. 시약병에 담겨진 용액을 질소가스 를 이용해 200 μL까지 농축하였다. 극성유기물질을 25 μL pyridine와 50 μL BSTFA를 첨가하여 유도체화 하였다. 분석의 신뢰성을 검증하기 위해서 검량선(r²) 및 회수율(%), 그리고 3개의 필드 공시료를 분석한 결과 값을 유기성분 기호(Mnemonic)와 함께 표 1에 나타내었다. 검량선의 결정계수(r²)은 0.998~1.000사 이로 매우 좋게 분석되었고, 회수율은 PERYL (24.48 %), 135BCA (150.51%), TRBCA (33.97%)를 제외하 고, 109.49±9.38%로 좋은 신뢰성을 나타냈다. 이에 모든 유기성분에 대해서 공시료 보정, 회수율 보정 (LEVOG: 123.75%의 회수율)과, 6-points 검량선

(LEVOG: r²=0.999)을 통해 내부 표준물질을 대한 농도 비례법을 이용하여 최종 농도를 계산하였다. 또 한, 기기의 바탕시료를 통한 검출한계(0.05 ng/m³)를 분석하여 질량이온 피크로 검출되지 않은 농도 값을 0.05 ng/m³ 미만으로 표기하였다. 최종적으로 분석에 따른 전체적인 불확실성은 분석농도의 20%로 계산 되어 농도 값과 함께 표 3에 나타내었다.

3. 결 과

3.1 집중 관측 결과

2011년 8월 25일부터 9월 8일까지 집중 관측이 이 루어졌다. 시간별 PM₁₀, PM_{2.5}, PM_{1.0} 평균 질량농도는 OPC (Optical Particle Counter, GRIMM Technologies, Inc., USA)를 통해 측정하였다. 준 실시간 탄소분석 기로 시간별 유기탄소와 원소탄소 농도를 측정하였 다. 시간별 평균 유기탄소와 원소탄소 농도는 분석기 의 문제로 인해 2011년 8월 30일 이후부터 측정하 였다. 2011년 8월 25일부터 9월 8일까지 제주도 고 산 슈퍼사이트에서 측정한 시간당 평균 PM₁₀, PM_{2.5}, PM_{1.0} 질량, 유기탄소, 원소탄소와 CO 가스의 농도의 시간적 변화양상을 그림 2에 나타내었다.

전체 관측 기간 동안 시간별 평균 PM₁₀ 질량 농도 는 5.1 µg m⁻³에서부터 47.6 µg m⁻³까지 다양하게 나 타났고, 평균 (±표준편차)은 25.0±8.2 µg m⁻³로 측 정되었다(표 2). 반면에 PM_{2.5}의 질량 농도는 2.1~ 37.3 µg m⁻³까지의 범위를 나타내었고 평균은 15.9±

Fig. 2. Time series concentrations of PM₁₀, PM_{2.5}, PM_{1.0}, OC, EC, and CO for the sampling period at the Gosan sampling site.

	$PM_{10}(\mu g m^{-3})$	$PM_{2.5} (\mu g \ m^{-3})$	$PM_{1.0} (\mu g m^{-3})$	PM _{2.5} /PM ₁₀	$PM_{2.5} (\mu g \ m^{-3})^*$
Min~Max	5.1~41.6	2.1~37.2	1.4~33.2	0.1~0.9	3.8~41.7
$Mean \pm SD$	25.0 ± 8.1	15.9 ± 6.5	10.9 ± 5.7	0.6 ± 0.2	20.9 ± 8.0

Table 2. Summary of statistical results for PM₁₀, PM_{2.5}, and PM_{1.0} mass concentrations for the sampling period.

*based on filter weighting method

Fig. 3. Back trajectories (black lines) by HYSPLIT model and AOD related to three classified air-masses (ES, M, C-N) for the sampling period.

6.5μg m⁻³이었다. 2011년 8월 25일부터 9월 8일까지 관측 장소에서 PM_{1.0} 질량 농도는 10.9±5.8μg m⁻³ 로 낮게 측정되었다. 집중 관측기간 동안 평균 PM_{2.5}/ PM₁₀은 0.65±0.17으로 나타났고, 전체 샘플링 기간 동안 미세입자 질량이 우세하게 나타났다. 8시간 평 균 PM_{2.5} 질량 농도는 3.8μg m⁻³부터 41.7μg m⁻³으 로 다양하게 나타났고 평균은 20.9±8.0μg m⁻³으로 나타났다.

집중 모니터링 기간 동안 고산에서 PM_{2.5}의 시간 별 평균 탄소성 분진의 유기탄소 농도는 0.99에서 5.92μgC m⁻³로 나타났고, 평균은 3.01±0.94μgC m⁻³ 로 나타났다, 관측 기간 동안의 원소탄소 농도는 상 대적으로 낮은 편이었다. 원소탄소는 2011년 8월 30 일 밤 9시 최대농도 2.45μgC m⁻³로 나타났고, 평균 값은 0.47±0.37μgC m⁻³이었다. 유기탄소 농도와 원 소탄소 농도의 비율은 1.3~20.2로 나타났고 평균값 은 6.2±3.1로 나타났다. 전체 샘플링 기간 동안 총 탄소와 원소탄소 농도의 비율은 0.05에서 0.43로 나 타났다.

3.2 역궤적 분석

본 연구에서 대기 기원의 특성을 규명하고자 유입

공기의 흐름을 분석하기 위해 NOAA의 HYSPLIT model을 사용하여 역궤적 분석 (back-trajectory analysis)을 수행했다. 집중 측정 기간 동안 유입된 기류의 궤도는 동해상에서 유입된 기류(ES, East Sea), 남서 쪽에서 유입되는 해양성 기류(M, Marine), 북대륙성 기류(C-N, Continental-North)의 3가지로 구분할 수 있었다. 그림 3은 세 기류의 4일 역궤적 분석을 모사 한 것이다. 동해상에서 유입된 기류는 측정 초기부터 9월 1일 16:00까지를 나타났고, 해양성 기류는 9월 1일부터 2일까지, 북대륙성 기류는 9월 3일부터 관측 종료 시까지 나타났다. 유입기류의 유형을 확인하기 위해, Moderate Resolution Imaging Spectroradiometer (MODIS) 위성 자료를 이용하여 분진의 광학적 두께 (Aerosol optical thickness, AOT)가 산정되었다. 좀 더 자세히 ES의 경우 동해안으로부터 한반도 남해안 일 대를 지나 유입된 것으로 분석할 수 있고, M의 경우 북태평양 및 서해안으로부터 유입된 것으로 분석할 수 있다. 또한, C-N의 경우, 중국으로부터 한반도를 거쳐 유입된 것으로 분석할 수 있다. 이에, C-N의 경 우에 ES 및 M의 경우보다 인위적 물질의 유입가능 성이 상대적으로 높음을 시사하고 있다. 집중관측 기 간 동안 분류된 3가지 기류, ES, M, 그리고 C-N의 영

728 배민석·박승식·김영준

(average \pm standard deviation)	Unit	ES M		C-N
PM ₁₀	ug m ⁻³	23.7±9.3 25.9±7.5		27.2+5.8
OC	$\mu g m^{-3}$	39+08 $23+08$		2.7 ± 0.0
EC	$\mu g m^{-3}$	0.6 ± 0.4 0.3 ± 0.5		0.4 ± 0.3
CO	ppbv	121 ± 42 148 ± 49		161 ± 43
(concentration ± uncertainty*)	Unit	ES M		C-N
Levoglucosan	ng m ⁻³	83.81±16.76 34.33±6.87		56.86±11.37
Polyaromatic Hydrocarbons				
Benzo(b)fluoranthene	$ng m^{-3}$	0.44 ± 0.09	0.38 ± 0.08	0.92 ± 0.18
Benzo(k)fluoranthene	$ng m^{-3}$	0.27 ± 0.05	0.37 ± 0.07	0.55 ± 0.11
Benzo(e)pyrene	$ng m^{-3}$	0.25 ± 0.05	0.26 ± 0.05	0.55 ± 0.11
Benzo(a)pyrene	$ng m^{-3}$	< 0.05	0.08 ± 0.02	0.08 ± 0.02
Pervlene	$ng m^{-3}$	< 0.05	< 0.05	< 0.05
Indeno(1.2.3-cd)pyrene	$ng m^{-3}$	0.28 ± 0.06	0.30 ± 0.06	0.49 ± 0.10
Benzo(GHI)pervlene	$ng m^{-3}$	0.29 ± 0.06	0.30 ± 0.06	0.51 ± 0.10
Dibenz(ah)anthracene	$ng m^{-3}$	0.09 ± 0.02	0.05 ± 0.01	0.08 ± 0.02
Picene	$ng m^{-3}$	0.07 ± 0.01	< 0.05	0.08 ± 0.02
Coronene	$ng m^{-3}$	0.10 ± 0.02	0.11 ± 0.02	0.19 ± 0.04
Dibenzo(ae)pyrene	ng m ⁻³	< 0.05	< 0.05	< 0.05
Hopanes				
17A(H)-22.29.30-Trisnorhopane	ng m ⁻³	0.06 ± 0.01	< 0.05	< 0.05
17B(H)-21A(H)-30-Norhopane	$ng m^{-3}$	0.14 ± 0.03	0.09 ± 0.02	0.07 ± 0.01
17A(H)-21B(H)-Hopane	ng m ⁻³	0.21 ± 0.04	0.17 ± 0.03	0.12 ± 0.02
n-Alkanes				
Tricosane	$ng m^{-3}$	1.35 ± 0.27	0.90 ± 0.18	1.14 ± 0.23
Tetracosane	$ng m^{-3}$	1.83 ± 0.37	0.36 ± 0.07	0.73 ± 0.15
Pentacosane	$ng m^{-3}$	3.14 ± 0.63	1.40 ± 0.28	1.94 ± 0.39
Hexacosane	$ng m^{-3}$	2.78 ± 0.56	1.00 ± 0.20	1.36 ± 0.27
Heptacosane	ng m ⁻³	4.24 ± 0.85	2.13 ± 0.43	3.33 ± 0.67
Octacosane	ng m ⁻³	3.49 ± 0.70	1.38 ± 0.28	1.69 ± 0.34
Nonacosane	$ng m^{-3}$	4.40 ± 0.88	2.63 ± 0.53	3.58 ± 0.72
Triacontane	ng m ⁻³	3.44 ± 0.69	1.56 ± 0.31	1.64 ± 0.33
Hentriacontane	ng m ⁻³	441 ± 0.88 328 ± 0.66		4.13 ± 0.83
Dotriacontane	$ng m^{-3}$	2.74 ± 0.55 1.34 ± 0.27		1.30 ± 0.26
Tritriacontane	ng m ⁻³	2.94 ± 0.59 1.97 ± 0.39		1.80 ± 0.36
Tetratriacontane	ng m ⁻³	1.99 ± 0.40 1.05 ± 0.21		0.93 ± 0.19
n-Alkanoic Acids				
Eicosanoicacid	ng m ⁻³	1.88 ± 0.38	0.86 ± 0.17	1.28 ± 0.26
Heneicosanoic acid	$ng m^{-3}$	0.85 ± 0.17 0.29 ± 0.06		0.55 ± 0.11
Docosanoicacid	$ng m^{-3}$	2.90 ± 0.58 1.74 ± 0.35		2.76 ± 0.55
Tricosanoic acid	ng m ⁻³	1.73 ± 0.35 0.96 ± 0.19		1.48 ± 0.30
Tetracosanoicacid	ng m ⁻³	4.27 ± 0.85 3.34 ± 0.67		4.44 ± 0.89
Pentacosanoic acid	$ng m^{-3}$	1.13 ± 0.23 0.72 ± 0.14		1.07 ± 0.21
Hexacosanoic acid	ng m ⁻³	2.09 ± 0.42 2.34 ± 0.47		3.24 ± 0.65
Heptacosanoic acid	ng m ⁻³	0.91 ± 0.18 0.63 ± 0.13		0.84 ± 0.17
Octacosanoicacid	ng m ⁻³	2.84 ± 0.57 5.02 ± 1.00		5.54 ± 1.11
Nonacosanoic acid	ng m ⁻³	1.20 ± 0.24	1.08 ± 0.22	1.15 ± 0.23
Triacontanoicacid	ng m ⁻³	3.35 ± 0.67 4.63 ± 0.93		4.88 ± 0.98
Aromatic acids				
Dehydroabietic acid	ng m ⁻³	4.17 ± 0.83	4.31 ± 0.86	2.10 ± 0.42
7-oxodehydroabietic acid	ng m ⁻³	1.05 ± 0.21	0.18 ± 0.04	0.15 ± 0.03
Phthalicacid	ng m ⁻³	37.63 ± 7.53	26.48 ± 5.30	28.40 ± 5.68

한국대기환경학회지 제 29 권 제 6 호

(concentration ± uncertainty*)	Unit	ES	М	C-N
Isophthalicacid	ng m ⁻³	4.08 ± 0.82	1.98 ± 0.40	2.55 ± 0.51
Terephthalicacid	ng m ⁻³	52.34 ± 10.47	21.13 ± 4.23	29.02 ± 5.80
Methylphthalicacid	ng m ⁻³	5.25 ± 1.05	3.01 ± 0.60	3.42 ± 0.68
1,2,4-Benzenetricarboxylicacid	ng m ⁻³	20.20 ± 4.04	16.48 ± 3.30	16.45 ± 3.29
1,2,3-Benzenetricarboxylicacid	ng m ⁻³	0.58 ± 0.12	0.53 ± 0.11	0.49 ± 0.10
1,3,5-Benzenetricarboxylicacid	$ng m^{-3}$	< 0.05	< 0.05	< 0.05
1,2,4,5-Benzenetetracarboxylicacid	ng m ⁻³	2.61 ± 0.52	2.62 ± 0.52	1.33 ± 0.27

Table 3. Continued.

* Uncertainty=20% of analytical result.

향을 받을 때의 PM_{2.5}, 유기탄소, 원소탄소, 그리고 CO 농도의 통계를 표 3에 나타내었다. 각각의 ES, M, 그리고 C-N기류 영향 하에 있을 때의 PM₁₀ 질량 농도는 각각 23.7±9.3 μg m⁻³, 25.9±7.5 μg m⁻³, 그 리고 27.2±5.8 μg m⁻³로 나타났다. 탄소성 분진의 농 도가 가장 높을 때는 동해상에서 기류가 유입되었을 때로 이는 이차 유기분진의 영향을 받아 유기탄소 농 도가 증가한 것으로 사료된다. 이를 좀 더 자세히 분 석하기 위해 다음의 탄소 열광학 분석을 수행하였다.

3.3 탄소 열광학 분포를 통한 탄소성 분진 특성 분석

2011년 여름철 집중 측정 기간 동안의 탄소성 분 진의 특성을 보다 자세하게 분석하기 위해 분진의 검출 온도를 확인하는 탄소 열광학 분포를 분석했다. 탄소 열광학 분포는 유기분진 중 상대적으로 휘발성 이 강한 유기분진이 많이 포함된 유기 오염 물질의 경우 쉽게 휘발되어 상대적으로 낮은 온도에서도 검 출되며, 방향족 탄화수소를 포함하는 일차 유기분진 의 탄소 성분의 구성 비율이 높은 경우 화학적으로 강한 결합력에 의해 고온에서 분해되어 검출된다는 이론을 기반으로 한다. 탄소 열광학 분포를 위한 데 이터 분석 방법은 그림 4에 나타내었다. 먼저 탄소 분석기로부터 분석된 각 시간별 뎨이터로부터 원 뎨 이터를 추출하였다. 이를 탄소분석기 업체 (Sunset Lab. Inc., USA)로부터 얻은 CO2 변환 알고리즘에 의 해 CO2 ppm로 변환하여 최종 데이터를 계산하였다. 이때, 기계적 양의 오차 (positive artifact) 보정 및 탄 소 분석기내 오븐의 온도 승온 과정이 NIOSH5040 의 프로토콜을 만족하는지 확인하였다. 또한 레이저 투과율, 내부표준물질 정확도 등 확인하여 최종 뎨이 터를 계산하였다. 이에 탄소 열광학 분포를 통해 동 시간에 분석한 유기탄소 농도 값으로 정규화 하여 유기분진의 열광학 분포가 분진의 발생원과 비교 분 석하였다.

그림 4(a)는 2011년 8월 30일부터 9월 7일까지 고 산 집중측정소에서 관측된 탄소성 성분을 검출 온도 에 따라 구분한 탄소 열광학 분포이다. 중간의 적색 은 레이저 투과율에 따른 유기탄소와 원소탄소의 분 리점을 나타낸다. 이에 분리점 하단면적은 유기탄소 를, 분리점 상단면적은 원소탄소를 나타낸다. 그래프 의 적색 면적은 NDIR에 의해 분석된 분석시간 당 CO₂의 ppm 농도(dCO₂ ppm dt⁻¹)를 나타낸다. 즉, 적 색계열이 진할수록 관련된 분석 온도에서의 고농도 의 탄소 농도를 나타낸다. 분석된 분석시간 당 CO2 의 ppm 농도(dCO₂ ppm dt⁻¹)가 같은 시간에 분석된 전체 유기 탄소 질량 내의 비율을 분석하기 위해 유 기탄소 질량으로 정규화 (dCO₂ ppm dt⁻¹/OC μg m⁻³ dt⁻¹)한 탄소 열광학 분포를 그림 4(b)에 나타내었다. 이를 통해 보다 정확한 분석 온도에 따른 탄소 열광 학 분포 특성을 알 수 있다.

그 결과 그림 4(b)의 탄소 열광학 분포가 각각의 기류 이동에 따른 다른 열광학 분포를 보이는 것을 알 수 있다. ES, 즉 동해상에서 기류가 유입될 때 주 로 낮은 온도에서 탄소성분(약 200°C)이 검출되는 경향을 확인할 수 있다. 또한, C-N 기류의 영향 하에 서는 검출된 탄소 성분의 양은 적지만 탄소 성분의 특성을 나타내는 열광학 분포가 상대적으로 높은 온 도에서(약 400°C)이 검출되는 것을 확인할 수 있다. 이는 ES와 C-N 기류에 따른 유기성분이 다름을 유 추 할 수 있다. ES의 경우에는 이차 유기탄소에 의 한 열광학적 분포와 C-N의 경우에는 일차 유기 탄 소에 의한 열광학적 분포를 나타낼 수 있음을 시사 한다. 이를 좀 더 확인하기 위해 다음의 유기성분을

Fig. 4. (a) Carbonaceous thermal distribution and (b) normalized carbonaceous thermal distribution by carbon measurement for the sampling period.

분석하였다.

3.4 유기성분 분석

2011년 집중 측정 기간에 고용량공기포집기를 이 용하여 포집된 분진을 유기 용매 추출 및 농축하여 유기 질량이온(m/z)의 데이터 추출에 따른 최종 유 기 질량 농도를 계산하였다. 분석 대상 유기성분으로 는 polyaromatic hydrocarbons (PAHs), hopanes, nalkanes, n-alkanoic acids, 이차 유기성분인 aromatic acids와 함께 바이오매스 소각의 지시자인 LEVOG 등을 포함하였다.

표 3에 나타내듯이 지시자 유기 물질 분석 결과, LEVOG의 평균농도는 57.6 ng m⁻³으로, 같은 제주도 고산 지점에서 Stone *et al.* (2011)이 발표한 2007년 측정 분석된 결과 값(10.26 ng m⁻³)에 비해 다소 높 게 분석되었다. 하지만 다른 측정값을 살펴보면 오스 트레일리아에서는 5200 ng m⁻³ (Jordan *et al.*, 2006), 인도네시아에서는 9400 ng m⁻³ (Abas *et al.*, 2004)까지 보고된 바가 있고, 미국에서는 2980 ng m⁻³ (Note *et al.*, 2001)이 보고된 바 있다. 전 세계적으로 보고된 다른 지역(Bae *et al.*, 2012)에 비해 비슷하거나 다소 낮게 나타나 2011년 집중 관측 기간 동안 바이오매 스 소각에 의한 영향이 다른 지역에 비해 미비했음 을 알 수 있으며 기류에 따른 변화량도 매우 작게 나 타났다.

연소 배출물질의 대표적 유기물질인 PAHs는 총 11종 (BBFRN, BKFRN, BEPRN, BAPRN, PERYL, ICDPY, BGHPE, DBAAN, PICEN, CORON, DBAPY) 을 분석 하였으며, 위 성분의 농도의 합이 ES인 경우 평균(±표준편차) 1.82±0.14 ng m⁻³, M은 1.87±0.16 ng m⁻³, C-N는 3.46±0.30 ng m⁻³으로 분석하였다. 이 는 Stone *et al.* (2011)이 발표한 2007년 농도 값과 비 교하여 BBFRN, BKFRN, BEPRN, BAPRN 경우 비슷 한 값을 나타내었고, 미국 도심지역에서 분석된 같은 유기성분의 농도 값에 비해 낮은 농도로 분석 되어 1차 유기분진의 직접적인 영향이 상대적으로 적게

Fig. 5. Pairwise correlation scatterplots between each PAH and aromatic acid (ng) in OC (µg) for the C-N and for the ES.

나타남을 알 수 있다(Bae and Schauer, 2009). 하지만 위에서 언급한 바와 같이 동기간의 탄소 열광학 분 포가 높은 온도에서(약 400°C)이 검출되는 것으로 보아, C-N의 경우 PAHs를 포함하는 일차 유기탄소 에 의한 영향을 확인할 수 있다. 또한 CO 농도 또한 C-N의 경우 161±43 ppbv로 ES의 경우보다 약 33% 증가함을 보여주고 있다. 이는 C-N 측정 기간 동안 에 측정지점인 고산의 PAHs를 포함하는 일차 유기 분진이 이차 유기분진에 비해 상대적으로 높게 기여 를 하는 것을 알 수 있다. 원인으로는 중국과 한반도 를 거치는 장거리 오염물질의 가능성과 지역적 오염 물질 배출 영향을 동시에 고려할 수 있다.

자동차 배출의 대표적인 유기성분인 ATNHO, BANHO, ABHOP인 경우 세성분 농도 합이 ES인 경 우 평균(±표준편차) 0.40±0.07 ng m⁻³, M은 0.30± 0.06 ng m⁻³, C-N는 0.21±0.05 ng m⁻³으로 분석되어 자동차에 의한 대기환경으로 유기물질의 직접적인 영향이 매우 미비함을 알 수 있다. 이는 고산 측정소 내의 자동차에 의한 직접적인 영향이 거의 없음을 시사한다.

대기 유기성분 중 aromatic acids의 주성분은 벤젠 에 carboxylic (-COOH)기가 포함된 carboxylic acids 이며, 대부분 광화학적 반응에 의한 이차 유기성분으 로 분류한다. 일반적인 carboxylic acids인 경우 carboxylic 기의 숫자에 의해서 mono-, di-, tri-, tetra-carboxylic acids 등으로 나눌 수 있다. 이들 성분들은 직 접적인 배출에 의한 일차 유기분진으로 분류되기도 하지만(Simoneit, 1985), OH 라디칼에 의한 광화학적 반응에 의해 생성되는 대표적인 이차 유기분진이며, 대기 유기분진 중 일차에 의한 영향보다 많은 부분 을 차지하고 있다(Sheesley *et al.*, 2004; Fraser *et al.*, 2003).

본 연구에서는 aromatic acids는 DHABA, ODHAA 와 함께 4종류의 di-carboxylic acids (PHTHA, IPHTA, TPHTA, MPHTA), 3종류의 tri-carboxylic acids (124 BCA, 123BCA, 135BCA, 그리고 1종의 tetra-carboxylic acids (TRBCA)의 총 10종의 aromatic acids를 분석하 였다. 그 결과 aromatic acids 농도변화는 기류의 변화 와 관련성이 있는 것으로 나타났다. 기류별로 살펴보 면 ES인 경우 aromatic acids가 다소 높게 나타났으 며, 농도의 합이 128±26 ng m⁻³이었다. 다음으로 E의 영향을 받았을 때 77±15 ng m⁻³이었으며, C-N의 영 향을 받을 때 84±17 ng m⁻³로 분석 불확실성 내에 서 비슷한 값으로 나타났다. 각 성분별로 농도를 살 펴보면 TPHTA가 해양의 영향을 받았을 때 52.34 ng m⁻³로 가장 높게 나타났으며, PHTHA 37.63 ng m⁻³, 124BCA 20.20 ng m⁻³으로, 이 3가지 성분의 ES, 즉 동해상에서 유입된 기류의 영향을 받았을 때 평균농 도가 다른 해양 및 대륙성 기류의 영향에 의한 평균 농도에 비해 약 60% 높게 분석되었다. 이는 분석 불 확실성을 고려하더라도 통계적으로 유의한 높은 값 을 나타냄을 알 수 있다. 이렇게 동해상에서 유입된

기류의 영향을 받았을 때 aromatic acids 유기물질 지 시자가 증가하는 이유는 장거리이동의 유기물질의 노화(aging)에 따른 영향으로 볼 수 있다. 더불어 앞 서 설명한 탄소 열광학분포에서 나타내듯이 낮은 온 도(약 200°C)에서 탄소 성분이 검출되는 경우와 일 치하며, 이는 이차 유기분자 지시자인 aromatic acids 가 동일한 상관관계를 나타남을 분석할 수 있다.

이를 좀 더 자세히 나타내고자 ES와 C-N 기류별 OC 질량농도 내의 각각의 PAHs 성분과 aromatic acids 성분의 상관관계를 그림 5에 나타내었다. 그림 5에서 볼 수 있듯이 ES 기류인 경우 OC내 aromatic acid 성분이 PAHs에 비해 높은 비율을 나타내는 것 을 볼 수 있다. 반면에 C-N 기류인 경우 OC내 PAHs 성분이 aromatic acids에 비해 높은 비율로 존재하는 것을 알 수 있다. 기울기를 살펴보면 aromatic acids 성분이 0.89로 PAHs 성분의 0.31에 비해 약 3배 높 은 값을 나타내며 이는 ES 기류 상태에서 상대적으 로 높은 농도의 aromatic acids 성분, 즉 이차 유기분 진이 존재함을 나타낸다.

4. 결 론

집중 모니터링은 2011년 8월 25일부터 9월 8일까 지 수행되었다. 집중 관측 기간 동안 PM₁₀, PM_{2.5}, PM_{1.0} 질량 농도는 각각 25.0±8.1 μg m⁻³, 15.9±6.5 μg m⁻³과 10.9±5.7 μg m⁻³로 측정되었다. 전체 샘플 링 기간 동안 탄소성 분진의 농도를 살펴보았을 때 유기탄소는 0.99부터 5.92 μgC m⁻³ 사이로 나타났고, 평균 농도는 3.0±0.9 μgC m⁻³ 이었다. 원소탄소는 최 대 2.4 μgC m⁻³를 나타내었고, 평균 농도는 0.5±0.4 μgC m⁻³이었다.

기류의 경로는 4일 역계적 기류 분석을 기반으로 동해상에서 유입된 기류(ES), 해양성 기류(M)와 대 륙성 기류(C-N)로 분류되었다. 이 중 C-N의 경우 위 에서 탄소 열광학 분포가 높은 온도에서(약 400°C) 이 검출되며, PAHs와의 관계 및 CO 농도(161±43 ppbv)에 의해 일차 유기분진에 의한 영향으로 결론 내릴 수 있다. 원인으로는 중국과 한반도를 거치는 장거리 이동 물질의 가능성과 지역적 직접 배출 영 향을 동시에 고려할 수 있다. ES의 경우 동해상에서 유입된 기류의 영향을 받을 때 높은 탄소성 분진의 농도는 유기탄소와 원소탄소가 각각 3.9±0.8 μgC m⁻³과 0.6±0.4 μgC m⁻³로 나타났으며, 이는 이차 유 기분진인 aromatic acids 농도가 동해상에서 유입될 때 통계적 유의수준에서 높게 분석됨과 낮은 온도에 서 열광학 분포, 그리고 ES와 C-N 기류별 OC 질량 농도 내의 각각의 PAHs 성분과 aromatic acids 성분 의 상관관계를 분석해 볼 때 장거리이동의 유기물질 의 광산화과정으로부터 기인한 노화(aging)로 결론 내릴 수 있다.

감사의 글

본 논문은 2011학년도 목포대학교 교내연구비 지 원에 의하여 연구되었습니다. 제주도 고산에서 샘플 링을 도와준 광주과학기술원 이광열, 신주선에게 깊 은 감사를 드립니다.

References

- Abas, M., D. Oros, and B. Simoneit (2004) Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes, Chemosphere, 55, 1089-1095.
- Bae, M., J. Lee, Y. Kim, M. Oak, J. Shin, K. Lee, H. Lee, S. Lee, and Y. Kim (2012) Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques, Asian J. of Atmos. Environ., 6, 53-66.
- Bae, M., J. Schauer, J. DeMinter, J. Turner, D. Smith, and R. Cary (2004a) Validation of a Semi-Continuous Instrument for Elemental Carbon and Organic Carbon Using a Thermal-Optical Method, Atmos. Environ., 38, 2885-2893.
- Bae, M., J. Schauer, J. DeMinter, and J. Turner (2004b) Hourly and Daily Patterns of Particle-Phase Organic and Elemental Carbon Concentrations in the Urban Atmosphere, J. Air Waste Manage. Assoc., 54, 823-833.
- Bae, M. and J. Schauer (2009) Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models, Asian J. of Atmos. Environ., 3, 219-236.

- Fraser, M.P., G.R. Cass, and B.R.T. Simoneit (2003) Air Quality Model Evaluation Data for Organics. 6. C-3-C-24 Organic Acids, Environ. Sci. Technol., 37, 446-453.
- Hopke, P. (2009) Contemporary threats and air pollution, Atmos. Environ. 43, 87-93.
- Jacobson, M. (2001) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res., 106(D2), 1551-1568.
- Jaffrezo, J.L., G. Aymoz, and J. Cozic (2005) Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter, Atmos. Chem. Phys., 5, 2915-2925.
- Jordan, T., A. Seen, and G. Jacobsen (2006) Levoglucosan as an atmospheric tracer for woodsmoke, Atmos. Environ., 40, 5316-5321.
- Leck, C., M. Norman, E. Bigg, and R. Hillamo (2002) Chemical composition and sources of the high Arctic aerosol relevant for cloud formation, J. Geophys. Res., 107(D12), 4135.
- Mader, B., J. Schauer, J. Seinfeld, R. Flagan, J. Yu, H. Yang, H. Lim, B. Turpin, J. Deminter, G. Heidemann, M. Bae, P. Quinn, T. Bates, D. Eatough, B. Huebert, T. Bertram, and S. Howell (2003) Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia, Atmos. Environ., 37, 1435-1449.
- Nolte, C., J. Schauer, G. Cass, and B. Simoneit (2001) Highly polar organic compounds present in wood smoke and in the ambient atmosphere, Environ. Sci. Technol., 35, 1912-1919.
- Park, S. and Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72.
- Raes, F., T. Bates, F. McGovern, and M. Van Liedekerke (2000) The 2nd Aerosol Characterization Experiment (ACE-

2): general overview and main results, Tellus B., 52, 111-125.

- Ramanathan, V. and G. Carmichael (2008) Global and regional climate changes due to black carbon, Nature Geosci., 1, 221-227.
- Rattigan, O., H. Felton, M. Bae, J. Schwab, and K. Demerjian (2010) Multi-year hourly PM2.5 carbon measurements in New York : Diurnal, day of week and seasonal patterns, Atmos. Environ., 44, 2043-2053.
- Schauer, J., B. Mader, J. DeMinter, G. Heidemann, M. Bae, J. Seinfeld, R. Flagan, R. Cary, D. Smith, B. Huebert, T. Bertram, S. Howell, J. Kline, P. Quinn, T. Bates, B. Turpin, H. Lim, J. Yu, H. Yang, and M. Keywood (2003) ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon, Environ. Sci. Technol., 37, 993-1001.
- Sheesley, R.J., J. Schauer, E. Bean, and D. Kenski (2004) Trends in Secondary Organic Aerosol at a Remote Site in Michigan's Upper Peninsula, Environ. Sci. Technol., 38, 6491-6500.
- Simoneit, B., J. Schauer, C. Nolte, D. Oros, V. Elias, M. Fraser, W. Rogge, and G. Cass (1999) Levoglucosan, a Tracer for Cellulose in Biomass Burning and Atmospheric Particles, Atmos. Environ., 33, 173-182.
- Simoneit, B.R.T. (1985) Application of Molecular Marker Analysis to Vehicular Exhaust for Source Reconciliations, Int. J. Environ. Anal. Chem., 22, 203-233.
- Stone, E., S. Yoon, and J. Schauer (2011) Chemical Characterization of Fine and Coarse Particles in Gosan, Korea during Springtime Dust Events, Aerosol Air Qual. Res., 11, 31-43.
- Turpin, B. and H. Lim (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602-610.