• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.029 seconds

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs) (셀룰로오스 나노크리스탈 강화 셀룰로오스 아세테이트 나노복합소재 제조 및 특성)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.565-576
    • /
    • 2018
  • Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.

Analysis on Freezing Reduction of Road Tunnels with Heat Insulation Method during Winter (단열공법이 적용된 겨울철 도로터널의 동결저감 효과 분석)

  • Son, Hee-Su;Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.17-27
    • /
    • 2017
  • Gangwon province which is located in northeast of Korea is the coldest region where average daily temperature is below zero during winter while the other regions are above zero. However, there have been insufficient researches on the insulation design and the effect of the insulation on the freezing damages, even though freezing damages were reported consistently in the lining of road tunnel during winter. In this study, to investigate the effect of insulations on the reduction of freezing damages, numerical analysis was performed considering geotechnical and meteorological characteristics in Gangwon province during winter. As a result, it was found that thickness of concrete and shotcrete in lining had negligible effect on the freezing depth while the insulation had significant effect on it. In addition, because the freezing depth is greatly affected by the thermal conductivity of the ground behind the lining in the period of cold weather, these effects should be considered in the estimation of the insulation thickness.

A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen (수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구)

  • Bae, Jaeok;Choi, Minsu;Suh, Hyunuk;Jeon, Chunghwan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

Performance Evaluation of High Strength Concrete with Composite Fibers in Accordance with High Temperature (복합섬유가 혼입된 고강도 콘크리트의 고온가열에 따른 성능 평가)

  • Kim, Seung-Ki;Kim, Woo-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.63-71
    • /
    • 2015
  • The objective of the present study is to investigate how elevated temperature ranging from $100^{\circ}C$ to $800^{\circ}C$ as well as room temperature affects the variation of mechanical properties of high strength concrete ($over\;f_{ck}=60MPa\;grade$). In this experiment, specimens were exposed for a period of $2^{\circ}C/min$ to temperatures of $20^{\circ}C$, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$, respectively. Accordingly, the study investigated the fire resistance performance of high strength concrete mixed with composite fibers which composed with hybrid fibers and steel fibers. After cooling down to ambient temperature, the following basic mechanical properties were then evaluated and compared with reference values obtained prior to thermal exposure: (i) compressive strength in room temperature; (ii) residual compressive strength; (iii) Poisson's ratio; (iv) weight change; (v) SEM analysis & XRD analysis In addition, XRD and SEM Images analyses were performed to investigate chemical and physical characteristics of high strength concrete with composite fibers according to high temperature.

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

Characteristics of (Sr1-xBax)NdFe3+1-τFe4+τO4-y System Heat-treated in Air

  • Lee, Eun-Seok;Hag, Jang-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.39-42
    • /
    • 2012
  • To study the physical and chemical properties, solid solutions of $(Sr_{1-x}Ba_x)NdFe{^{3+}}_{1-\tau}Fe{^{4+}}_{\tau}O_{4-y}$ system with x=0.0(SBN-0), 0.1(SBN-1), 0.2(SBN-2) and 0.3(SBN-3) were synthesized in air at 1,473 K and annealed in air at 1,073 K for 24 h. X-ray powder diffraction assured that the four samples had tetragonal symmetries (I4/mmm). Their lattice volumes increased gradually with x values. Nonstoichiometric chemical formulas were formulated using the data such as $\tau$(amount of $Fe^{4+}$ ion) and y(oxygen deficiency) values using Mohr salt analysis. It was found out that all the four samples had excessive oxygen (4-y>4.0). All the samples started to lose some of their oxygen at around 613K(TG/DTA thermal analysis). They exhibited semiconductivities in the temperature range of around 283-1173K. All the four specimens had sufficient tensile strength to endure the force of 19.6 N (2 kg of weights) and the conductivity values of the ECIAs which were painted on pieces of glass with the area of $150mm^2$ ($10mm{\times}15mm$) and it was in the order of ECIA-0${\rightarrow}$ECIA-1${\rightarrow}$ECIA-2${\rightarrow}$ECIA-3 at a constant temperature.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis (이상유동 해석을 통한 브레이징 판형 응축기 설계 연구)

  • Hwang, Dae-jung;Oh, Cheol;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Lee, Byeong-gil
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

Urban Heat Mitigation Effect Analysis based on the Land Use Location Distribution by Using an Ecosystem Service Valuation Model (생태계 서비스 가치평가 모형을 이용한 토지이용 위치분배에 따른 도시 열저감 효과분석)

  • Sangjun, Kang
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.369-377
    • /
    • 2022
  • The purpose of this study is to explore whether open spaces with land use characteristics of forest green areas can have different influence on the urban heat reduction depending on the location distribution, through the case of Gangneung-si downtown area. As a research method, the InVest Urban Cooling Model, which is a thermal phenomenon analysis model, is employed based on the most recent data available in 2018. In order to focus on the effect of location distribution of open space in the city, the downtown area is set as the observation area, not the entire city. The analysis of the land use location distribution scenarios shows that large-scale forests or clustered forests are more effective in reducing atmospheric heat in the region than several small-scale forests.

Dosimetric Characteristics of a Thermal Neutron Beam Facility for Neutron Capture Therapy at HANARO Reactor (하나로 원자로 BNCT 열중성자 조사장치에 대한 선량특성연구)

  • Lee, Dong-Han;Suh, So-Heigh;Ji, Young-Hoon;Choi, Moon-Sik;Park, Jae-Hong;Kim, Kum-Bae;Yoo, Seung-Yul;Kim, Myong-Seop;Lee, Byung-Chul;Chun, Ki-Jung;Cho, Jae-Won;Kim, Mi-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2007
  • A thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the HANARO, 30 MW multi-purpose research reactor. Mixed beams with different physical characteristics and relative biological effectiveness would be emitted from the BNCT irradiation facility, so a quantitative analysis of each component of the mixed beams should be performed to determine the accurate delivered dose. Thus, various techniques were applied including the use of activation foils, TLDs and ionization chambers. All the dose measurements were perform ed with the water phantom filled with distilled water. The results of the measurement were compared with MCNP4B calculation. The thermal neutron fluxes were $1.02E9n/cm^2{\cdot}s\;and\;6.07E8n/cm^2{\cdot}s$ at 10 and 20 mm depth respectively, and the fast neutron dose rate was insignificant as 0.11 Gy/hr at 10 mm depth in water The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water Good agreement within 5%, has been obtained between the measured dose and the calculated dose using MCNP for neutron and gamma component and discrepancy with 14% for fast neutron flux Considering the difficulty of neutron detection, the current study support the reliability of these results and confirmed the suitability of the thermal neutron beam as a dosimetric data for BNCT clinical trials.

  • PDF