• Title/Summary/Keyword: Thermal analysis characteristics

Search Result 2,348, Processing Time 0.041 seconds

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Study of Air Flow Effects on Heat Characteristics of Warm Needle Acupuncture (온침 열특성의 기류 영향에 관한 연구)

  • Kim, Jung-Wo Roy;Lee, Hye-Jung;Yi, Seung-Ho
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.35-47
    • /
    • 2010
  • Objectives : To characterize the thermal properties of traditional warm needle and new warm needle with various air flows as an important environmental factor and to suggest the necessity of maintaining suitable environment of clinics to maximize their efficacy. Methods : We measured the temperature characteristics of traditional moxa warm needle and new moxa charcoal warm needle by applying an automatic temperature acquisition system with thermocouples while external various air flows were supplied. Temperatures of two positions at the needle body were measured while a moxa cone burned. Typical temperature characteristics like peak temperature, duration, curve shape and the efficiency of the heat stimuli by heat amount analysis were executed. Results : Both warm needles showed similar temperature curve with an increase in the air flow. Peak temperature and duration of effective heat decreased with the air flow, as shown in indirect moxibustion on garlic. The temperature change pattern by the air flow became more apparent when the total combustion heat was compared with the effective heat. The values from two positions on the needle body were significantly different, showing a distance dependency from the heat source of warm needle acupuncture. Conclusions : Thermal properties of warm needle acupuncture was observed variously with surrounding air flow of 0.0 - 0.7 m/s. It emphasized the importance of environmental control as well as the warm needle itself such as heat source and needle. The latter has already been known to deliver designated heat to subjects. It also indicated the importance of education and skill of the practitioners of warm needle acupuncture.

A Study on Noise Resistance and Physical Properties of NBR Rubber Materials Containing Oleamide and Aramid Chip (Oleamide 및 아라미드 칩을 첨가한 NBR 고무재료의 내소음성 및 물성 연구)

  • Kim, Hyun-Muk;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.79-87
    • /
    • 2006
  • This study are conducted for the purpose of developing rubber material with noise and crack resistance. Cure characteristics, physical properties, thermal resistance, fuel resistance, abrasion resistance, crack resistance and noise resistance of NBR compounds with the various amounts of oleamide and aramid chip were investigated. From the measurements of cure characteristics and Mooney viscosities, cure characteristics of uncured rubber showed that a torque was decreased as the amount of oleamide increased. Hardness, modulus and elongation of rubber specimens tended to be reduced gradually, however, tensile strength remained unchanged as the amount of the oleamide increased. As a testing results of heat resistance for 70 hours at $120^{\circ}C$ and oil resistance far 70 hours at $40^{\circ}C$, tensile strength and elongation were all reduced. From the TGA/DSC analysis, there was no such a change observed in thermal characteristics of rubber materials. As a result of testing basic physical properties, abrasion resistance, noise resistance and crack resistance, the optimum ratio of oleamide to NBR was found to be 3 phr, while that of aramid to NBR 227001 was 1 phr.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Thermal Characteristics of Daegu using Land Cover Data and Satellite-derived Surface Temperature Downscaled Based on Machine Learning (기계학습 기반 상세화를 통한 위성 지표면온도와 환경부 토지피복도를 이용한 열환경 분석: 대구광역시를 중심으로)

  • Yoo, Cheolhee;Im, Jungho;Park, Seonyoung;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1101-1118
    • /
    • 2017
  • Temperatures in urban areas are steadily rising due to rapid urbanization and on-going climate change. Since the spatial distribution of heat in a city varies by region, it is crucial to investigate detailed thermal characteristics of urban areas. Recently, many studies have been conducted to identify thermal characteristics of urban areas using satellite data. However,satellite data are not sufficient for precise analysis due to the trade-off of temporal and spatial resolutions.In this study, in order to examine the thermal characteristics of Daegu Metropolitan City during the summers between 2012 and 2016, Moderate Resolution Imaging Spectroradiometer (MODIS) daytime and nighttime land surface temperature (LST) data at 1 km spatial resolution were downscaled to a spatial resolution of 250 m using a machine learning method called random forest. Compared to the original 1 km LST, the downscaled 250 m LST showed a higher correlation between the proportion of impervious areas and mean land surface temperatures in Daegu by the administrative neighborhood unit. Hot spot analysis was then conducted using downscaled daytime and nighttime 250 m LST. The clustered hot spot areas for daytime and nighttime were compared and examined based on the land cover data provided by the Ministry of Environment. The high-value hot spots were relatively more clustered in industrial and commercial areas during the daytime and in residential areas at night. The thermal characterization of urban areas using the method proposed in this study is expected to contribute to the establishment of city and national security policies.

Thermal-Hydraulic Analysis and Parametric Study on the Spent Fuel Pool Storage (기사용 핵연료 저장조에 대한 열수력 해석 및 관련 인자의 영향 평가)

  • Lee, Kye-Bock;Nam, Ki-Il;Park, Jong-Ryul;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.19-31
    • /
    • 1994
  • The objective of this study is to conduct a thermal-hydraulic analysis on the spent fuel pool and to evaluate a parametric effect for the thermal-hydraulic analysis of spent fuel pool. The selected parameters are the Reynolds Number and the gap flow through the oater gap between fuel cell and fuel bundle. The simplified flow network for a path of fuel cells is used to analyze the natural circulation phenomenon. In the flow network analysis, the pressure drop for each assembly from the entrance of the fuel rack to the exit of the fuel assembly is balanced by the driving head due to the density difference between the pool fluid and the average fluid in each spent fuel assembly. The governing equations ore developed using this relation. But, since the parameters(flow rate, pressure loss coefficient, decay heat, density)are coupled each other, iteration method is used to obtain the solution. For the analysis of the YGN 3&4 spent fuel rack, 12 channels are considered and the inputs such as decay heat and pressure loss coefficient are determined conservatively. The results show the thermal-hydraulic characteristics(void fraction, density, boiling height)of the YGN 3&4 spent fuel rack. There occurs small amount of boiling in the cells. Fuel cladding temperature is lower than 343.3$^{\circ}C$. The evaluation of parametric effect indicates that flow resistances by geometric effect are very sensitive to Reynolds number in the transition region and the gap flow is negligible because of the larger flow resistance in the gap flow path than in the fuel bundle.

  • PDF

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF

A Study on Pyrolytic and Anatomical Characteristics of Korean Softwood and Hardwood (국산 침·활엽수재의 열분해 및 해부학적 특성에 관한 연구)

  • Kim, Dae-Young;Kang, Sung-Ho;Jeong, Heon-young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.31-42
    • /
    • 2007
  • To investigate the pyrolytic and anatomical characteristics of Korean softwood, Pinus densi-flora, Pinus rigida and Larix leptolepis, and hardwood, Acer palntatum, Fraxinus rhynchophylla and Quercus variabilis, chemical components analysis, TG-DTA (Thermogravimetric Analysis & Differential Thermal Analysis), MBA (Methylene Blue Adsorption) test and SEM observation were carried out. For TG-DTA, samples were carbonized up to $800^{\circ}C$ at the heating rate of $10^{\circ}C$/min under $N_2$ flows 1 l/min using thermogravimetric analyzer. Chemical component analysis of all samples resulted in typical contents of major wood component. In TG-DTA results, softwood showed higher char yield than hardwood, and lignin displayed the highest char yield among the major wood components. All samples showed typical TGA, DTG and DTA curves for wood pyrolysis except a few differences between softwood and hardwood. Content of lignin influenced its pyrolysis characteristics, while molecular structure of lignin affected not only the weight loss but also the yield of char. In MBA test results, MBA of softwoods was higher than that of hardwoods. Char of Pinus densiflora showed the highest MBA, but its degree was lower than activated carbon or fine charcoal about 23 and 4 times, respectively. SEM observation showed carbonization process preserves wood structure and retain the micro-structure of wood fibers.