A Study on Pyrolytic and Anatomical Characteristics of Korean Softwood and Hardwood

국산 침·활엽수재의 열분해 및 해부학적 특성에 관한 연구

  • Kim, Dae-Young (College of Life Resource Science, Department of Forest Resources, Dongguk University) ;
  • Kang, Sung-Ho (College of Life Resource Science, Department of Forest Resources, Dongguk University) ;
  • Jeong, Heon-young (College of Life Resource Science, Department of Forest Resources, Dongguk University)
  • 김대영 (동국대학교 생명자원과학대학 산림자원학과) ;
  • 강성호 (동국대학교 생명자원과학대학 산림자원학과) ;
  • 정헌영 (동국대학교 생명자원과학대학 산림자원학과)
  • Received : 2007.07.02
  • Accepted : 2007.08.22
  • Published : 2007.11.25

Abstract

To investigate the pyrolytic and anatomical characteristics of Korean softwood, Pinus densi-flora, Pinus rigida and Larix leptolepis, and hardwood, Acer palntatum, Fraxinus rhynchophylla and Quercus variabilis, chemical components analysis, TG-DTA (Thermogravimetric Analysis & Differential Thermal Analysis), MBA (Methylene Blue Adsorption) test and SEM observation were carried out. For TG-DTA, samples were carbonized up to $800^{\circ}C$ at the heating rate of $10^{\circ}C$/min under $N_2$ flows 1 l/min using thermogravimetric analyzer. Chemical component analysis of all samples resulted in typical contents of major wood component. In TG-DTA results, softwood showed higher char yield than hardwood, and lignin displayed the highest char yield among the major wood components. All samples showed typical TGA, DTG and DTA curves for wood pyrolysis except a few differences between softwood and hardwood. Content of lignin influenced its pyrolysis characteristics, while molecular structure of lignin affected not only the weight loss but also the yield of char. In MBA test results, MBA of softwoods was higher than that of hardwoods. Char of Pinus densiflora showed the highest MBA, but its degree was lower than activated carbon or fine charcoal about 23 and 4 times, respectively. SEM observation showed carbonization process preserves wood structure and retain the micro-structure of wood fibers.

국산 침 활엽수재의 열분해 및 해부학적 특성에 관해 조사하기 위해 침엽수재 3종(소나무, 리기다소나무, 낙엽송) 및 활엽수재 3종(단풍나무, 물푸레나무, 굴참나무)의 화학적 성분분석, TG-DTA (Thermogravimetric Analysis & Differential Thermal Analysis), 메틸렌블루 흡착성능(MBA) 및 SEM 관찰을 하였다. TG-DTA에서 시료는 $1{\ell}/min$$N_2$ 가스가 유입되는 조건하에 $10^{\circ}C$/min의 숭온속도로 최대 $10^{\circ}C$까지 탄화되었다. 화학적 성분분석 결과 모든 시료에서 전형적인 목재 주성분의 함량을 나타냈다. TG-DTA 결과, 침엽수재의 탄화수율이 활엽수보다 높았으며 목재 주성분 중 리그닌의 탄화수율이 가장 높았다. 모든 시료가 전형적인 목재 열분해의 TGA, DTG, DTA 곡선을 나타냈지만, 침 활엽수재 간에 몇 가지 차이점이 나타났다. 리그닌의 함량이 열분해에 큰 영향을 미쳤으며, 리그닌의 분자구조에 따라 중량감소와 탄화수율이 크게 달라졌다. 메틸렌블루 흡착성능 시험 결과 침엽수재의 MBA가 활엽수재보다 높았으며 소나무의 MBA가 가장 높았지만, 활성탄이나 백탄보다는 약 23배, 4씩 낮았다. SEM 관찰 결과 탄화 과정에서 전체적인 목재의 구조와 목재 섬유의 섬유구조가 그대로 유지됨을 확인하였다.

Keywords

References

  1. 공석우, 김병로. 2002. 국산 주요 수종 및 목질재료 탄화물의 흡착 특성, 목재공학, 30(4): 33-40
  2. 김병로, 공석우. 1999. 미이용 목질폐잔재의 탄화 이용개발(I): 수종의 간벌재 탄화와 탄화물의 특성. 목재공학. 27(2): 70-77
  3. 김병로, 공석우. 1999. 미이용 목질폐잔재의 탄화 이용개발(II): 수종의 목질재료 탄화와 탄화물의 특성. 목재공학. 28(2): 57-65
  4. 엄유진, 김승도, 김주식, 박영권, 명소영. 2003. 바이오매스의 주성분인 셀룰로우즈, 리그닌, 헤미셀룰로우즈의 비등온 열분해 반응 특성에 관한 연군. 한국폐기물학회. 춘계학술연구회발표논문집. pp.122-126
  5. 황병호, 윤병호, 조남석, 이종윤. 2005. 최신 목재화학. 선진문화사. pp. 136-137
  6. Bagreev, A., T. J. Bandosz, and D. C. Locke. 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon. 39(13): 1971-1979 https://doi.org/10.1016/S0008-6223(01)00026-4
  7. Gani, A. and I. Naruse. 2006. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy
  8. Byrne C. E. and D. C. Nagle. 1997. Carbonization of wood for advanced materials applications. Carbon. 35(2):259-266 https://doi.org/10.1016/S0008-6223(96)00136-4
  9. Lopez, C. E., Pasquali, and H. Herrera. 1997. Pyrolysis of lignin and IR analysis of residues. Thermochimica Acta. 293(1-2): 39-46 https://doi.org/10.1016/S0040-6031(96)03116-4
  10. Haykiri-Acma, H. 2005. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis
  11. Banyasz, J. L., S. Li, J. Lyons-Hart, and K. H. Shafer. 2001. Gas evolution and the mechanism of cellulose pyrolysis. Fuel. 80(12): 1757- 1763 https://doi.org/10.1016/S0016-2361(01)00060-6
  12. del Rio, J. C., A. Gutierrez, M. Hernando, P. Landin, J. Romero, and A. T. Martinez. 2005. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/ MS. Journal of Analytical and Applied Pyrolysis. 74(1-2): 110- 115 https://doi.org/10.1016/j.jaap.2005.04.002
  13. Kumar, K., R. Kothari, and J. N. Bohra. 1997. Effect of reactive atmosphere and maximum heat treatment temperature on char characteristics of pyrolyzed rayon cloth. Carbon. 35(5} 703-706 https://doi.org/10.1016/S0008-6223(97)86643-2
  14. Helsen, L., E. Van den Buick, S. Mullens, and J. Mullens. 1999. Low-temperature pyrolysis of CCA-treated wood: thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis. 52(1): 65-86 https://doi.org/10.1016/S0165-2370(99)00034-0
  15. Muller-Hagedorn, M., H. Bockhorn, L. Krebs, and U. Muller. 2003. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis. 68-69: 231 -249
  16. Cao, N., H. Darmstadt, F. Soutric, and C. Roy. 2002. Thermogravimetric study on the steam activation of charcoals obtained by vacuum and atmospheric pyrolysis of softwood bark residues. Carbon. 40(4): 471-479 https://doi.org/10.1016/S0008-6223(01)00135-X
  17. Williams P. T. and S. Besler. 1996. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy. 7(3): 233-250 https://doi.org/10.1016/0960-1481(96)00006-7
  18. Li, S., J. Lyons-Hart, J. Banyasz, and K. Shafer. 2001. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel. 80(12): 1809-1817 https://doi.org/10.1016/S0016-2361(01)00064-3
  19. Tsujiyama, S. and A Miyamori. 2000. Assignment of DSC thermograms of wood and its components. Thermochimica Acta. 351(1-2): 177 -181 https://doi.org/10.1016/S0040-6031(99)00413-X
  20. Sohda, Y., M. Shinagawa, and M. Ishii. 1999. Effect of carbonization pressure on carbon yield in a unit volume. Composites Part A: Applied Science and Manufacturing. 30(4): 503-506 https://doi.org/10.1016/S1359-835X(98)00141-9