• Title/Summary/Keyword: Thermal Wave

Search Result 545, Processing Time 0.029 seconds

A Study on the Thermal Design for A Signal Processor in the Micro-Wave Seeker (초고주파 탐색기 신호처리부의 방열설계에 관한 연구)

  • Lee, Won-Hee;Yu, Young-Joon;Kim, Ho-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This paper focuses on the thermal design of a signal processor in Micro-Wave Seeker. High temperature environment and ESS(Environmental Stress Screening) test condition should be considered in designing a signal processor. First, we performed the thermal analysis to know conditions under which a signal processor is thermally reliable. As a result of thermal analysis, we found that adopting heat transfer block to the thermally fragile components is most efficient, because the heat transfer block can control the thermal loads of the individual components. Next, we verified this solution by numerical simulation and experiment and concluded that thermal reliability of a signal processor can be achieved. Maximum temperature difference between numerical simulation and experiment is about $2^{\circ}C$.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates

  • Ebrahimi, Farzad;Dabbagh, Ali;Tornabene, Francesco;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.157-167
    • /
    • 2019
  • In this paper, a classical plate model is utilized to formulate the wave propagation problem of magnetostrictive sandwich nanoplates (MSNPs) while subjected to hygrothermal loading with respect to the scale effects. Herein, magnetostriction effect is considered and controlled on the basis of a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations can be derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of presented model is verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.

Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method (격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산)

  • Kang Ho-Keun;Ro Ki-Deok;Son Kang-Pil;Choi Min-Sun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope (초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가)

  • Kim, Chung-Seok;Song, Jin-Hun;Kwon, Sook-In;Lim, Jea-Seang;Park, Ik-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF

A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer (하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.

Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model (3차원 ELCOM 모형을 이용한 대청호 수온성층 모의)

  • Chung, Se Woong;Lee, Heung Soo;Choi, Jung Kyu;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.922-934
    • /
    • 2009
  • The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.

Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change - (알루미늄 스퍼터링 처리 의류소재의 스텔스 특성과 전자파 차단 및 전기적 특성에 관한 연구 - 밀도 변화를 중심으로 -)

  • Han, Hye Ree
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.4
    • /
    • pp.579-593
    • /
    • 2022
  • This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.