• Title/Summary/Keyword: Thermal Strain Properties

Search Result 336, Processing Time 0.024 seconds

Built-Up Edge Analysis of Orthogonal Cutting By Visco-Plastic Finite Element Method (점소성 유한요소법에 의한 이차원 절삭의 구성인선 해석)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.60-63
    • /
    • 1995
  • The behavior of the work materials in the chip-tool interface in extremely high strain rates and temperatures is more that of viscous liquids than that of normal solid metals. In these circumstances the principles of fluid mechanics can be invoked to describe the metal flow in the neighborhood of the cutting edge. In the present paper an Eulerian finite element model is presented that simulates metal flow in the vicinity of the cutting edge when machining a low carbon steel with carbide cutting tool. The work material is assumed to obey visco-plastic (Bingham solid) constitutive law and Von Mises criterion. Heat generation is included in the model, assuming adiabatic conditions within each element. the mechanical and thermal properties of the work material are accepted to vary with the temperature. The model is based on the virtual work-stream function formulation, emphasis is given on analyzing the formation of the stagnant metal zone ahead of the cutting edge. The model predicts flow field characteristics such as material velocity effective stress and strain-rate distributions as well as built-up layer configuration

  • PDF

A Study on PECVD Silicon Nitride Thin Films for IC Chip Packaging (IC 칩 패키지용 PECVD 실리콘 질화막에 관한 연구)

  • 조명찬;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.220-223
    • /
    • 1996
  • Mechanical properties of Plasma-Enhanced Chemical Vapor Deposited (PECVD) silicon nitride thin film was studied to determine the feasibility of the film as a passivation layer over the aluminum bonding areas of integrated circuit chips. Ultimate strain of the films in thicknesses of about 5 k${\AA}$ was measured using four-point bending method. The ultimate strain of these films was constant at about 0.2% regardless of residual stress. Intrinsic and residual stresses of these films were measured and compared with thermal shock and cycling test results. Comparison of the results showed that more tensile films were more susceptible to crack- induced failure.

  • PDF

The Effect of In-flight Bulk Metallic Glass Particle Temperature on Impact Behavior and Crystallization

  • Kim, Soo-Ki;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.242-243
    • /
    • 2006
  • NiTiZrSiSn bulk metallic glass powder was produced using inert gas atomization and then was sprayed onto a SS 41 mild steel substrate using the kinetic spraying process. Through this study, the effects of thermal energy of in-flight particle and crystallization degree by powder preheating temperature were evaluated. The deformation behavior of bulk metallic glass is very interesting and it is largely dependent on the temperature. The crystalline phase formation at impact interface was dependent on the in-flight particle temperature. In addition, variations in the impact behavior need to be considered at high strain rate and in-flight particle temperature.

  • PDF

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

Purification and Characterization of a Protease Produced by a Planomicrobium sp. L-2 from Gut of Octopus vulgaris

  • Liu, Qing;Sun, Shujing;Piao, Meizi;Yang, Ji Young
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.273-279
    • /
    • 2013
  • Protease widely exists in the digestive tract of animals and humans, playing a very important role in protein digestion and absorption. In this study, a high protease-producing strain Planomicrobium sp. L-2 was isolated and identified from the digestive tract of Octopus variabilis. The strain was identified by physiological and biochemical experiments and 16S rDNA sequences analysis. A protease was obtained from the strain Planomicrobium sp. L-2 through ammonium sulfate precipitation, dialysis and enrichment, DEAE-Sephadex A50 anion-exchange chromatography, and Sephadex G-100 gel chromatography. The molecular weight and properties of the protease were characterized, including optimum temperature and pH, thermal stability, protease inhibitions and metal ions. According to our results, the protease from Planomicrobium sp. L-2 strain designated as F1-1 was obtained by three-step separation and purification from crude enzyme. The molecular weight of the protease was 61.4 kDa and its optimum temperature was $40^{\circ}C$. The protease F1-1 showed a broad pH profile for casein hydrolysis between 5.0~11.0. No residual activity was observed after incubation for 40 min at $60^{\circ}C$ and 60 min at $50^{\circ}C$. F1-1 protease was inhibited by $Mn^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Cu^{2+}$ ions, as well as PMSF, indicating that the protease F1-1 was a serine protease. Additionally, research basis provided by this study could be considered for industrial application of octopus intestinal proteases.

A study on thermo-mechanical behavior of MCD through bulge test analysis

  • Altabey, Wael A.
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.107-119
    • /
    • 2017
  • The Micro circular diaphragm (MCD) is the mechanical actuator part used in the micro electro-mechanical sensors (MEMS) that combine electrical and mechanical components. These actuators are working under harsh mechanical and thermal conditions, so it is very important to study the mechanical and thermal behaviors of these actuators, in order to do with its function successfully. The objective of this paper is to determine the thermo-mechanical behavior of MCD by developing the traditional bulge test technique to achieve the aims of this work. The specimen is first pre-stressed to ensure that is no initial deflection before applied the loads on diaphragm and then clamped between two plates, a differential pressure (P) and temperature ($T_b$) is leading to a deformation of the MCD. Analytical formulation of developed bulge test technique for MCD thermo-mechanical characterization was established with taking in-to account effect of the residual strength from pre-stressed loading. These makes the plane-strain bulge test ideal for studying the mechanical and thermal behavior of diaphragm in both the elastic and plastic regimes. The differential specimen thickness due to bulge effect to describe the mechanical behavior, and the temperature effect on the MCD material properties to study the thermal behavior under deformation were discussed. A finite element model (FEM) can be extended to apply for investigating the reliability of the proposed bulge test of MCD and compare between the FEM results and another one from analytical calculus. The results show that, the good convergence between the finite element model and analytical model.

A Numerical Study on Chemical Effects of Co2 Addition to Oxidizer and Fuel Streams in H2-O2 Counterflow Diffusion Flames (수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co2의 화학적 효과에 관한 수치해석 연구)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.371-381
    • /
    • 2004
  • Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.

Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven (전자레인지용 고압다이오드의 방열특성)

  • Kim, Sang-Cheol;Kim, Nam-Kyun;Bahng, Wook;Seo, Gil-Soo;Moon, Seoung-Ju;Oh, Bang-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of $25{\mu}m$ and $3700{\mu}m$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF

Thermal Structural Analysis of the Engine Turbocharger under the Transient Temperature History Corresponding to the Motoring Fatigue Test (모터링 내구시험을 상사한 비정상 온도이력을 받고 있는 엔진 터보차져의 열적 거동해석)

  • Choi, Bok-Lok;Bang, In-Wan;Chang, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.126-132
    • /
    • 2011
  • Fatigue cracks of the turbocharger are often observed for high performance engines under thermal shock tests. Maximum exhaust gas temperature of recently developed gasoline engines could reach approximately $950^{\circ}C$. It's very important to estimate transient temperature histories during thermal shock cycles to predict the stress and the fatigue life of the turbocharger. With these temperature profiles, temperature-dependent material properties and boundary conditions, we could identify critical locations by the application of finite element simulation technologies. In this paper, we applied the reliable analysis approach to the actual turbocharger to predict the weak locations due to the repetitions of plastic strains and compared the results with the crack locations under physical engine test.

Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven (전자레인지용 고압다이오드의 방열특성)

  • Kim, Sang-Cheol;Kim, Nam-Kyun;Bahng, Wook;Seo, Gil-Soo;Moon, Seoung-Ju;Oh, Bang-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of 25$\mu\textrm{m}$ and 3,700$\mu\textrm{m}$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF