• Title/Summary/Keyword: Thermal Strain

Search Result 977, Processing Time 0.027 seconds

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory

  • Li, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.415-434
    • /
    • 2013
  • This work is concerned with transverse vibrations of axially traveling nanobeams including strain gradient and thermal effects. The strain gradient elasticity theory and the temperature field are taken into consideration. A new higher-order differential equation of motion is derived from the variational principle and the corresponding higher-order non-classical boundary conditions including simple, clamped, cantilevered supports and their higher-order "offspring" are established. Effects of strain gradient nanoscale parameter, temperature change, shape parameter and axial traction on the natural frequencies are presented and discussed through some numerical examples. It is concluded that the factors mentioned above significantly influence the dynamic behaviors of an axially traveling nanobeam. In particular, the strain gradient effect tends to induce higher vibration frequencies as compared to an axially traveling macro beams based on the classical vibration theory without strain gradient effect.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

Thermal Fatigue Life Prediction of Engine Exhaust Manifold (엔진 배기매니폴드의 열피로 수명 예측)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge (전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법)

  • Nam, Jeong-Hee;An, Deok-Soon;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

THERMAL EFFECTS ON THE STRAIN ENERGY RELEASE RATE FOR EDGE DELAMINATION IN CRACKED LAMINATED COMPOSITES

  • Soutis, C.;Kashtalyan, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, edge delaminations in cracked composite plates are analytically investigated. A theoretical model based upon a sub-laminate approach is used to determine the strain energy release rate, $G^{ed}$, in [$\pm$$\theta_m$/$90_n$]$_s$ carbon/epoxy laminates loaded in tension. The analysis provides closed-form expressions for the reduced stiffness due to edge delamination and matrix cracking and the total energy release rate. The parameters controlling the laminate behaviour are identified. It is shown that the available energy for edge delamination is increased notably due to transverse ply cracking. Also thermal stresses increase substantially the strain energy release rate and this effect is magnified by the presence of matrix cracking. Prediction for the edge delamination onset strain is presented and compared with experimental data. The analysis could be applied to ceramic matrix composite laminates where similar mechanisms develop, but further experimental evidence is required.

  • PDF

Development of Thermal Distortion Analysis Method Based on Inherent Strain for TMCP Steels (TMCP 강판의 고유변형도 기반 열변형 해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk;Won, Seok-Hee;Yi, Myung-Su
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • As ships become to be larger than ever, the thicker plate and the higher tensile steel plate are used in naval shipyard. Though special chemical composition is needed for high-tensile steels, recent high-tensile steels are made by the TMCP(Thermo-Mechanical control process) skill. The increase of yield stress and tensile stress of TMCP steels is induced from bainite phase which is transformed from austenite, but that increased yield stress can be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect principle of TMCP steels. This study developed an algorithm which can calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the predicting of the portion of initial bainite is considered when calculating inherent strain. The simulations of plate deformation by these values showed good agreements with experimental results of normalizing steels and TMCP steels in welding and heating. Finally we made an inherent strain database of steels used in Class rule.

Strain Analysis for Quality Factor oft he Layered Mg0.93Ca0.07TiO3-(Ca0.3Li0.14Sm0.42)TiO3 Ceramics at Microwave Frequencies

  • Cho, Joon-Yeob;Yoon, Ki-Hyun;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.222-225
    • /
    • 2002
  • Microwave dielectric properties of the layered and functionally graded materials (FGMs) of $Mg_{0.93}Ca_{0.07}TiO_3$ (MCT) and $(Ca_{0.3}Li_{0.14}Sm_{0.42})TiO_3$(CLST) were investigated as a function of the volume ratio of two components. Dielectric constant was decreased with an increase of the volume ratio of MCT which had a lower dielectric constant thant CLST. For the layered FGMs specimens, the difference of thermal expansion coefficients between two components induced thermal strain to dielectric layers, which was confirmed by the plot of ${\Delta}$k (X-ray diffraction peak width0 versus k (scattering vector) using the double-peak Lorentzian function, f(x). Quality factor of the specimens was affected by the thermal strain of dielectric layer, especially MCT layer. For the specimen with the volume ratio of MCT/CLST = 2, the qulaity factor of the specimen showed a minimum value due to the maximum thermal strain fo MCT layer.