• Title/Summary/Keyword: Thermal Scale

Search Result 1,325, Processing Time 0.028 seconds

Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates

  • Ebrahimi, Farzad;Dabbagh, Ali;Tornabene, Francesco;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.157-167
    • /
    • 2019
  • In this paper, a classical plate model is utilized to formulate the wave propagation problem of magnetostrictive sandwich nanoplates (MSNPs) while subjected to hygrothermal loading with respect to the scale effects. Herein, magnetostriction effect is considered and controlled on the basis of a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations can be derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of presented model is verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

Studies on the effect of thermal shock on crack resistance of 20MnMoNi55 steel using compact tension specimens

  • Thamaraiselvi, K.;Vishnuvardhan, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3112-3121
    • /
    • 2021
  • One of the major factors affecting the life span of a Reactor Pressure Vessel (RPV) is the Pressurised Thermal Shock (PTS). PTS is a thermo-mechanical load on the RPV wall due to steep temperature gradients and structural load created by internal pressure of the fluid within the RPV. Safe operating life of a nuclear power plant is ensured by carrying out fracture analysis of the RPV against thermal shock. Carrying out fracture tests on RPV/large scale components is not always feasible. Hence, studies on laboratory level specimens are necessary to validate and supplement the prototype results. This paper aims to study the fracture behaviour of standard Compact Tension [C(T)] specimens, made of RPV steel 20MnMoNi55, subjected to thermal shock through experimental and numerical investigations. Fracture tests have been carried out on the C(T) specimens subjected to thermal transient load and tensile load to quantify the effect of thermal shock. Crack resistance curves are obtained from the fracture tests as per ASTM E1820 and compared with those obtained numerically using XFEM and a good agreement was found. A quantitative study on the crack tip plastic zone, computed using cohesive segment approach, from the numerical analyses justified the experimental crack initiation toughness.

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

Performance Evaluation of Electronic Scale Mitigation Unit for Plate Heat Exchanger (판형 열교환기에 대한 전자식 스케일 완화 장치의 성능평가)

  • Seo, Hae-Sung;Shin, Sang-Chul;Kim, Kyong-Woo;Moh, Jeong-Hah;Kim, Dong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.13-18
    • /
    • 2000
  • The objective of the Present study is to investigate the performance of electronic scale mitigation unit(ESMU), which reduces the amount of scale in a heat exchanger. A plate heat exchanger with 20 thermal plates is used for the tests. In order to accelerate the rate of fouling in a laboratory test artificial hard water of 2000 ppm(as $CaCO_3$) is recirculated at a flow rate 5L/min throughout the tests. The overall heat trans(or coefficients and fouling factors are examined. Results show that the ESMU technology can significantly reduce the scale deposits.

  • PDF

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

CHANDRA SPECTROSCOPY OF SUPERNOVA REMNANT 3C 391

  • CHEN YANG;SU YANG;SLANE PATRICK O.;WANG Q. DANIEL
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.211-214
    • /
    • 2005
  • We performed a spatially resolved spectroscopic study of the thermal composite supernova remnant 3C 391 by the Chandra observation. Broad- and narrow-band X-ray images show a southeast-northwest elongated morphology and unveil a highly clumpy structure of the remnant. The spectral analysis for. the small-scale features indicates normal metal abundance and uniform temperature for the interior gas. The properties of the hot gas are largely in agreement with the cloudlet evaporation model as a main mechanism for the 'thermal composite' X-ray appearance, though radiative rim and thermal conduction may also be effective. An unresolved X-ray source, with a power-law spectrum, is observed on the northwest border. The equivalent width images reveal a faint finger-like protrusion in Si and S lines out of the southwest radio border.

Averaging Approach for Microchannel Heat Sinks Subjected to the Uniform Wall Temperature Condition (등온 경계 조건을 가지는 마이크로채널 히트 싱크의 열성능 해석을 위한 평균 접근법)

  • Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1247-1252
    • /
    • 2004
  • The present paper is devoted to the modeling method based on an averaging approach for thermal analysis of microchannel heat sinks subjected to the uniform wall temperature condition. Solutions for velocity and temperature distributions are presented using the averaging approach. When the aspect ratio of the microchannel is higher than 1, these solutions accurately evaluate thermal resistances of heat sinks. Asymptotic solutions for velocity and temperature distributions at the high-aspect-ratio limit are alsopresented by using the scale analysis. Asymptotic solutions are simple, but shown to predict thermal resistances accurately when the aspect ratio is higher than 10. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Characteristics of the thermal resistance of microchannel heat sinks are also discussed.

  • PDF

A Study of Characteristics of Weft Used in Wig Manufacturing (가발에 사용되는 원사의 특성 연구)

  • Lim, Sun-Nye
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2012
  • This study was used a thermogravimetric analyzer to determine thermal characteristics, a hair analysis system to examine morphological changes of wefts-human hair, poly vinyl chloride(PVC) and polyethylene terephthalate (PET)-used in manufacturing wigs. According to a flammability test on human hair and synthetic wefts for wigs, the best results were observed in human hair. According to a thermal test, PET was the best in terms of thermal stability. Also good tensile strength was observed as well. In a scanning electron microscope observation, no human hair scale layer was found because of chemical treatment. In the PVC sample, homogeneous unevenness was observed. Due to a lack of human hair supply and increase in its price, recently, PET weft has emerged as a great substitution for human hair. Because it can be curled using an electric curling device and is more efficient than the conventional non-flammable material PVC in terms of thermal resistance, it will become the next-generation weft for wigs.