• Title/Summary/Keyword: Thermal Resistance Matrix

Search Result 140, Processing Time 0.027 seconds

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

The effect of the matrix thickness on the long term performance of MCFC (매트릭스 두께가 MCFC 장기 성능에 미치는 영향)

  • Kim, Yun-Young;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.170-179
    • /
    • 2005
  • Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.

The Effect of Niobium on Wear and Friction Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 마찰마모특성에 미치는 Nb의 영향)

  • 이한영;백금주;김용진;배종수;홍성현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.14-19
    • /
    • 1999
  • In order to evaluate the effect of Nb on wear properties of high speed steel by powder metallurgy(PM-HSS), niobium-alloyed PM-HSS have been prepared by adding 0%, 1%, 3% and 5%Nb to PM-HSS of 6%W-5%Mo-4%Cr-5%V-5%Co presented in the previous paper. Sliding wear test have been conducted in various sliding speed conditions under the constant pressure using a pin-on-disc type machine. The results of this study shows that the wear resistance of PM-HSS has been increased by the addition of Nb in the range of experimental sliding speed. However, the amount of Nb shows to be unimportant parameter for the improvement of the wear resistance. It may be due to the thermal stability of carbide and high temperature properties of matrix by adding Nb comparing to the case of no addition.

  • PDF

The Effects of Niobium on Sliding Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 Nb의 영향)

  • 이한영;배종수;김용진
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • In order to evaluate the effect of Nb on wear properties of high speed steel(HSS) by powder metallurgy, niobium-alloyed HSS have been prepared by adding 0%, 1%, 3% and 5%Nb to HSS of 6%W-5%Mo-4 %Cr-5%V-5%Co. Sliding wear tests were conducted at various sliding speed conditions under the constant pressure using a pin-on-disc type machine. The results of this study show that the wear resistance of HSS by powder metallurgy was increased by the addition of Nb within the range of sliding speed used in this experimental study. However, the amount of Nb did not improve the wear resistance. It may be due to the thermal stability of carbide and high temperature properties of the matrix containing Nb comparing to that without Nb.

A study on Zn corrosion resistance of WC spray coating sealed with carbon nanotube suspensions (탄소 나노튜브 혼합액으로 봉공처리된 텅스텐 카바이드 용사층의 아연 내부식성에 대한 연구)

  • Kim, Bong-Hun;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • An experimental study was conducted to investigate the effect of carbon nanotubes on the zinc corrosion resistance of sealing layer formed on the Tungsten Carbide spray coating. Using the nanotubes, a sealing agent in the form of solid-liquid suspensions was made and applied to the surface of spray coating. A series of experiments, consisted of three stages such as preparation of test piece, molten-pot immersion test, and evaluation of micro structure, were undertaken to demonstrate complicated interaction existing between zinc ions and sealing layer containing the nanotubes. Experimental results showed newly developed sealing layer were less susceptible to corrosion and thus coated layer was well protected even in the case of 10 days exposure. Comparison of the micro structure after molten pot test also indicated that carbon nanotubes still remained in the matrix and organized more reliable frame work constituted with boron nitride and chromium compound. It was revealed that carbon nanotubes in the sealing layer played positive role to enhance zinc corrosion resistance in the perspective of both fibrous structure and inherent chemical stability.

A Study on Formation of Thick Hardened Layer on Al Alloy Surface by PYAW Process (PTAW법에 의한 Al 합금 표면의 후막경화층 형성에 관한 연구)

  • 임병수;김봉수;오세훈;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.92-103
    • /
    • 1997
  • The purpose of this study is to improve the wear resistance and hardness of Al alloy by making a formation of the thick surface hardening layers. The thick surface hardening layers were formed by PTAW(Plasma Transferred Arc Welding), with the addition of metal powders (Cu), ceramics powders (NbC, TiC), and mixture powders (Cu+NbC) in Al alloy (A1050, A5083). Mechanical properties of overlaid layers (wear resistance, hardness) were investigated in relation to the microstructure. The results obtained are summarized as follows: The depth of penetration was increased with increasing powder feeding rate. It is considered that these increase were due to the thermal pinch effect by the addition of powders, especially, for the Cu powders, were due to the heat of reaction with the matrix. The hardness and wear resistance of overlaid layers were improved with increasing powder feeding rate. For the Cu powders, it is considered that these increase were due to the increase of the formation of ${\theta}(CuAl_2)$ phase with increasing feeding rate of Cu powers.

  • PDF

THERMOMECHANICAL STUDY OF LASER TREATED NiTi DENTAL ARCH WIRE

  • Kim, Young-Kon;Park, Joon-B.;Lakes, R.S.;Andreasen, G.F.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.9-12
    • /
    • 1989
  • A preliminary study has been conducted to demonstrate the effect of laser heat treatment on Ni Ti alloy dental arch wires ($0.016"\;{\times}\;0.022"$ and $0.018"\;{\times}\;0.026"$, rectangular shape). Changes in mechanical and thermal properties and surface morphologies are investigated by using optical and scanning electron microscope (SEM), energy dispersive x-ray microprobe analysis(EDX), differential scanning calorimeter (DSC), and micro hardness tester. The results indicate that the laser can affect the thermal equilibrium state of the localized surface. Titanium rich surface film is formed by the laser treatment. The surface film and rapidly resolidified underlying structures show better chemical resistance than the matrix material. Phase transition temperatures which are related to shape recovery temperatures are changed after laser treatment. Hardness of resolidified area and heat affected zone are lower than before treatment.

  • PDF

Synthesis of Acryl Phosphate Antistatic Agent and Its Effect on the Antistatic, Thermal and Mechanical Properties of PMMA

  • Park, Eu-Soo;Cho, Eun-Bum;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.617-622
    • /
    • 2007
  • A simple and economic antistatic agent, (2-methacryloyloxyethyl)acid phosphate (acryl phosphate), was synthesized via the reaction of 2-hydroxyethyl methacrylate with phosphorus pentoxide. The acryl phosphate antistatic agent, synthesized in this study, was introduced into poly(methyl methacrylate) (PMMA) resin via copolymerization with MMA. This antistatic agent provides the PMMA matrix with excellent antistatic properties, including surface resistance and electric charge. A comparison of the present antistatic agent with other commercial agents demonstrated the excellence of not only its electrical, but also its thermal and mechanical properties.

A Study on the Thermal Resistance Strength with the Formation of the Zircon Phase in LAS System ($Li_2O-Al_2O_3-SiO_2$계 소지내에 Zircon상 형성에 따른 내열 강화 특성)

  • 전덕일;김정욱;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.935-941
    • /
    • 1992
  • The LAS system with good thermal properties has a narrow range of firing and sintering temperature near the melting point. So it is difficult to sinter LAS to dense sintered body. In this study, the petalite (Li2O.Al2O3.8SiO2) with good thermal properties, was taken as a base composition, and zironia was added in this composition to broaden the firing range, increase the mechanical strength, and control the thermal expansion. The thermal and mechanical properties were investigated. The results are as follows; 1. Zirconia phase was formed in LAS matrix and apparent porosity was decreased from 0.9% to 0.5%, and the mechanical strength was kincreased from 112 MPa to 190 MPa, by the densification of body. 2. The composition Li2O.Al2O3.8SiO2 has a negative thermal expansion, but the thermal expansion was changed from negative to positive with the densification and the increase of amount of synthesized zircon phase which had positive thermal expansion. The coefficient of thermal expansion, with the increase of the amount of additives, was low as -0.74~9.06$\times$10-7/$^{\circ}C$ in 20~$600^{\circ}C$, and 7.95~20.13$\times$10-7/$^{\circ}C$ in 20~80$0^{\circ}C$. 3. The mechanical strength of LZ15 (added with ZrO2.SiO2 15 wt%) composition thermal-shocked was stable in the temperature range of 0~$600^{\circ}C$, but rapidly decreased due to the increase of thermal expansion above $600^{\circ}C$.

  • PDF

Effect of graphite particulate on mechanical properties of glass fibre reinforced composite

  • Bhattacharjee, Antara;Roy, Kanchan;Nanda, B.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The recent trend is increasing towards the usage of polymer matrix composites since they have a wide variety of applications. They have applications in the field of aircraft and space industry, sporting goods, medical devices, marine and automotive applications and also in commercial usage. The most commonly used fibre-reinforced polymer matrix composite is Glass fibre reinforced epoxy (GFRE) composite which is used in aviation, sports and automotive industries. However, the strength of GFRE composites is not adequate for structural applications. Therefore, the current research focuses on increasing the strength of GFRE composites by reinforcing with micro Graphite (Gr) particulates. The Gr used is an ultra-fine powder with particle size 250 ㎛. Gr is known to have good wear resistance, thermal conductivity and can operate at high temperatures. Gr particulates are mixed with the epoxy matrix in various weight ratios. Hand-lay technique is used for fabricating the composites. Mechanical properties such as tensile strength, elongation, compressive strength and flexural strength are obtained experimentally to study the effect of change in Gr content (0-5 wt. %). The tests were done as per ASTM standards.