Abstract
Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.