• Title/Summary/Keyword: Thermal Recovery

Search Result 538, Processing Time 0.025 seconds

Analysis of Thermal Recovery Characteristics for Nozzle of SF6 GCB Considering Nozzle Ablation (노즐용삭을 고려한 SF6 가스차단기 노즐의 열적회복특성 해석)

  • Lee Byeong-Yoon;Song Ki-Dong;Chong Jin-Kyo;Park Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, a method for analyzing the thermal recovery characteristics of the nozzle of gas circuit breaker was described. In order to obtain thermal recovery characteristics, the transient simulation of SF6 arc plasma within the nozzle was carried out. In particular, the nozzle ablation was taken into account by simultaneously solving the PTFE concentration equation with the governing equations such as continuity, momentum and energy equation. After that, post arc current calculation was performed with the rate of rise of recovery voltage changed. From the calculated post arc current, it was possible to suggest the thermal recovery characteristics of the nozzle of gas circuit breaker.

Comparison of Thermal Recovery Characteristics of Hybrid Type Model Gas Interrupters According to the Arrangement of Thermal Expansion Chamber and Puffer Cylinder (팽창실과 파퍼 실린더의 배열형태에 따른 복합소호 모델 가스차단부의 열적회복특성 비교)

  • Song Ki-Dong;Chong Jin-Kyo;Park Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.725-731
    • /
    • 2004
  • In this study, the three type hybrid interrupters according to the arrangement of the thermal expansion chamber and the puffer cylinder(they are called 'serial type', 'parallel/exchanged type', and 'parallel/separated type' respectively in this work) were designed and manufactured. This paper presents the tested results of the thermal recovery characteristics on the interrupters using a simplified synthetic test facility. The 'serial type' hybrid interrupter which is to obtain more easily the pressure rise for the thermal recovery compared with the others has the best capability in the thermal recovery characteristics. In order to investigate the stress on the operating mechanism, the distortion of the stroke wave in on-load test was examined to the stroke curve in no-load test. The biggest distortion was occurred in the 'parallel/exchanged type' hybrid interrupter. Finally, the small interruption capability on the three type interrupters was estimated by a theoretical form and the 'parallel/separated type' hybrid interrupter has the advantage of the others in the view of structure.

Design of an Aquifer Thermal Energy Storage System(II) : Thermal Analysis (지하대수층을 이용한 축열시스템의 설계(II) : 열해석)

  • Lee, K.S.;Lee, T.H.;Song, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.315-324
    • /
    • 1994
  • The energy recovery efficiency(ERE) of an aquifer thermal energy storage system was calculated using curvilinear coordinate. The results of the calculation were compared with the experimental results, and agreed within 11% of the discrepancy. The variation of ERE was investigated as a function of the underground water natural velocity, the amount of the stored energy, and period of the energy recovery. The slower the natural velocity and shorter the recovery period, the higher ERE was yielded. Also it was found that increase in the amount of energy storage yields higher ERE, and carries out less influential ERE to the natural velocity. Reiterative usage of the aquifer as a thermal storage tends to gradually increase ERE. The result of this study implements that the aquifer thermal energy storage system is suitable for large cooling/heating loads, such as district cooling/heating.

  • PDF

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF

Design of an Aquifer Thermal Energy Storage System (I) : Isothermal Analysis (지하대수층을 이용한 축열시스템의 설계 (I) : 등온해석)

  • Song, Y.K.;Lee, K.S.;Lee, T.H.;Kim, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.102-110
    • /
    • 1993
  • An isothermal analysis was conducted to develop the design tool of an aquifer thermal energy storage system. Taejeon aquifer was chosen for the analysis, and the variation of FRE(Fluid Recovery Efficiency) with respect to the aquifer natural velocity and thermal load were investigated. The analysis results were compared with those of ATESSS(Aquifer Thermal Energy Storage System Simulator) and agreed within 2% of discrepancy. It is recommended, based on the result of this study, that the system may be suitable for a large volume of hot or chill thermal energy storage system, such as for district heating or cooling.

  • PDF

Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites (형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향)

  • 김희연;김경섭;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF

Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool (CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구)

  • 황석현;이진현;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

Thermal Recovery Characteristics of a CO2 Mixture Gas Circuit Breaker

  • Oh, Yeon-Ho;Song, Ki-Dong;Lee, Hae-June;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.969-973
    • /
    • 2016
  • Interruption tests were conducted using the same circuit breaker for an initial pressure of SF6 0.5 MPa (gauge pressure) and CO2 mixture 1.0 MPa, 0.8 MPa, and 0.6 MPa. The pressure-rises in the compression and thermal expansion chambers were measured for verifying the computational results using a simplified synthetic test facility. Further, the possibility of the CO2 mixture substituting SF6 gas was confirmed. Moreover, in view of the thermal recovery capability, it has also been confirmed that the pressure of the CO2 mixture can be reduced almost to the same value as that of the SF6 gas by optimizing the design parameters of the interrupter.

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF