• Title/Summary/Keyword: Thermal Power Generation

Search Result 626, Processing Time 0.022 seconds

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

Mechanical Properties of Porous Reaction Bonded Silicon Carbide (반응소결 탄화규소 다공체의 기계적 특성)

  • Hwang, Sung-Sic;Park, Sang-Whan;Han, Jae-Ho;Han, Kyung-Sop;Kim, Chan-Mook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.948-954
    • /
    • 2002
  • Porous reaction bonded SiC with high fracture strength was developed using Si melt infiltration method for use of the support layer in high temperature gas filter that is essential to develop the next generation power system such as integrated gasification combined cycle system. The porosity and pore size of porous RBSC developed in this study were in the range of 32∼36% and 37∼90 ${\mu}m$ respectively and the maximum fracture strength of porous RBSC fabricated was 120 MPa. The fracture strength and thermal shock resistance of porous RBSC fabricated by Si melt infiltration were much improved compared to those of commercially available porous clay bonded SiC due to the formation of the strong SiC/Si interface between SiC particles. The characteristics of pore structure of porous RBSC was varied depending on the amounts of residual Si as Well as the size of SiC particle used in green body.

Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics (소형 유기랭킨사이클 시스템 개발 및 작동특성에 관한 연구)

  • Yun, Eunkoo;Kim, Hyun Dong;Yoon, Sang Youl;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.919-926
    • /
    • 2013
  • Experiments were conducted to determine the operating characteristics of a small-scale ORC (organic Rankine cycle) system for various low-temperature heat sources. A small-scale ORC power generation system adopting R-245fa as a working fluid was designed and manufactured. Hot water was used as the heat source, and the temperature was controlled using 110-kW electric resistance heaters that provided temperatures of up to $150^{\circ}C$. An open-drive oil-free scroll expander directly connected to a synchronous generator was installed in the ORC unit. Experiments were conducted by varying the rotational speed of the expander under the same heat source temperature conditions. The factors that influence the performance of the small-scale ORC system were analyzed and discussed.

Operational Characteristics of Methanol Reformer for the Phosphoric Acid Fuel Cell System (인산형 연료전지용 메탄올 연료개질기의 운전 특성)

  • 정두환;신동열;임희천
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-207
    • /
    • 1993
  • A methanol reformer was designed and fabricated using a CuO-ZnO low temperature shift catalyst, and its operation characteristics have been studied for the phosphoric acid fuel cell (PAFC) power generation system. The type of reactor was annular Methanol was consumed both for heating and for reforming fuel. Contents of carbon monoxide produced from the reformer increased as the reaction temperatures increased, but decreased as the mole ratios of water to methanol(H$_2$O/CH$_3$OH) increased. At steady state operating conditional, temperature profile of the catalytic reactor of the reformer was well coincide with the model equation, and it took 50 minutes from start to the rated condition of the reformer. When the system was operated at 4/4 and 1/4 of load, thermal efficiencies of the system were 72.3% and 77%, respectively. When the PAFC system was operated with reformed gas in the range of 62 V-37.6 V and 0-147 A, the trend of I-V curve showed a typical fuel tell characteristic. At steady state condition, the flow rates of reforming and combustion methanol were 88.1 mol/h and 50.1 mol/h, respectively.

  • PDF

Numerical Analysis of Thermal Environment Control in High-Density Data Center (고밀도 데이터센터의 열환경제어를 위한 수치해석)

  • Kwon, Oh-Kyung;Kim, Hyeon-Joong;Cha, Dong-An
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.821-828
    • /
    • 2012
  • Increasing heat generation in CPUs can hamper effective recirculation and by-pass because of the large temperature difference between the exhaust and the intake air through a server room. This increases the overall temperature inside a data center and decreases the efficiency of the data center's cooling system. The purpose of the data center's cooling system is to separate the intake and exhaust air by controlling the computer room air-conditioner(CRAC). In this study, ICEPAK is used to conduct a numerical analysis of a data center's cooling system. The temperature distribution and the entire room are analyzed for different volumetric flow rates. The optimized volumetric flow rate is found for each CPU power. The heat removal and temperature distribution for CPU powers of 100, 120, and 140 W are found to be the best for a volumetric flow rate of $0.15m^3/s$. The numerical analysis is verified through RTI indicators, and the results appear to be the most reliable when the RTI value is 81.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Spherical UO3 Gel Preparation Using the External Gelation Method (External Gelation 방법을 이용한 구형 UO3 Gel 입자 제조)

  • Jeong, KyungChai;Kim, YeonKu;Oh, SeungChul;Cho, Moon-Sung;Lee, YoungWoo;Chang, JongWha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.729-736
    • /
    • 2005
  • HTGR (High Temperature Gas-cooled Reactor) is spotlighted to next generation nuclear power plant for producing the clean hydrogen gas and the electricity. In this study, the spherical $UO_3$ gel particles were prepared by the external gelation process, and the characteristics of these particles were analyzed the particle shape, composition of precipitate, and thermal decomposition characteristics with the Streoscope, FT-IR, and X-ray diffractometer. Raw material of the ADUN (Acid Deficient Uranyl Nitrate) solution, which has [$NO_3$]/[U] mole ratio = 1.75, was obtained from dissolution of the $U_{3}O_{8}$ powder with concentrated $HNO_3$, and its concentration is 3.5 M-U/l. The broth solution is prepared with the ADUN, urea, PVA, and THFA solution. The droplets of the broth solution was made through a nozzle system. From this study, we obtained the following results; 1) an externel chemical gelation process is a suitable method in the spherical $UO_3$ particle production, 2) the particle shape are changed by an urea mixing time, THFA volume, and the viscosity of the broth solution, 3) the amorphous $UO_3$ particles obtained from these experiments was converted to $U_{3}O_{8}$ and then $UO_2$ by heat treatment in hydrogen atmosphere at $600^{\circ}C$.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Experimental Study on Combustion Characteristics of a Swirl-stabilized Conical Burner (스월 예혼합 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Gu;Cho, Ju Hyeong;Lee, Dong Suk;Kim, Han Seok;Sohn, Chae Hoon;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • Experimental study has been carried out to understand combustion characteristics of a swirl-stabilized premixed gas turbine combustor for power generation. $NO_x$ and CO emissions, extinction limit, pressure loss, and temperature distribution were measured for various operating conditions. Results show that, with increasing inlet air temperature, $NO_x$ is increased due to a higher adiabatic flame temperature while CO is increased or decreased for low or high A/F ratio regime, respectively. depending on the flame location. With decreasing load from the design condition, $NO_x$ is decreased as thermal load is reduced. With further decreasing load, however, $NO_x$ is increased due to a longer residence time. CO is decreased and then increased with decreasing load. Flame extinction limit is extended with increasing inlet air temperature as the recirculation strength is enhanced.

Dispersing Properties of Heavy Crude Oil according to Dispersant Structures (중유용 분산제 구조에 따른 중유 분산 특성)

  • Son, Jeong-Mae;Kim, Nam-Kyun;Shin, Jihoon;Yang, Youngdo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.251-257
    • /
    • 2015
  • Heavy oil production is receiving significant attention because of increased demands for thermal power generation systems of the diesel engine and boilers. However, asphaltene, which is a heavy oil components (6-8 wt%), reduces the heat efficiency of the fuels owing to its agglomerated sludge of asphaltene during the burning process. Therefore, for hassle-free operation, we should develop asphaltene dispersants to suppress the formation of the sludge. We prepare variable salt-type polymeric dispersants using poly(isobutenyl succinic anhydride) and poly(amine) through both condensation esterification and acid-base neutralization reactions, which we subsequently evaluate for dispersing performance, using Turbiscan measurement. Total acid number (TAN) and total base number (TBN) of 75Lec-25SynDis.2 composed of lecithin and the prepared polymeric salt having the ratio of 3 : 1 are 18.9 and 33.7 mg KOH/g, respectively, which are comparable to those of the commercial dispersants (15.8 and 26.5 mg KOH/g). We determine the initial turbidity observed for 15 min of the polymeric dispersant was determined with transmittance (%), which can be calculated to separability number (SN). The SN value of 75Lec-25SynDis.2 is close to zero, which is superior to that of commercial dispersants and lecithin (0.015 and 0.017).