• Title/Summary/Keyword: Thermal Power Generation

Search Result 626, Processing Time 0.026 seconds

Characterization of n-type In3Sb1Te2 and p-type Ge2Sb2Te5 Thin Films for Thermoelectric Generators (박막 열전 발전 소자를 위한 In3Sb1Te2와 Ge2Sb2Te5 박막의 열전 특성에 관한 연구)

  • Kang, So-Hyeon;Seo, Hye-Ji;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • A thin film thermoelectric generator that consisted of 5 p/n pairs was fabricated with $1{\mu}m$-thick n-type $In_3Sb_1Te_2$ and p-type $Ge_2Sb_2Te_5$ deposited via radio frequency magnetron sputtering. First, $1{\mu}m$-thick GST and IST thin films were deposited at $250^{\circ}C$ and room temperature, respectively, via radio-frequency sputtering; these films were annealed from 250 to $450^{\circ}C$ via rapid thermal annealing. The optimal power factor was found at an annealing temperature of $400^{\circ}C$ for 10 min. To demonstrate thermoelectric generation, we measured the output voltage and estimated the maximum power of the n-IST/p-GST generator by imposing a temperature difference between the hot and cold junctions. The maximum output voltage and the estimated maximum power of the $1{\mu}m$-thick n-IST/p-GST TE generators are approximately 17.1 mV and 5.1 nW at ${\Delta}T=12K$, respectively.

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF

Real Options Analysis for the Investment of Floating Photovoltaic Project in Saemangeum (실물옵션을 활용한 새만금 수상태양광 투자사업의 수익성 분석)

  • Kim, Kyeongseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2021
  • Saemangeum Development is the largest national project in South Korea, which has been developed for an agricultural, economic and tourist area for 30 years from 1987. In order to convert power sources that used to depend on nuclear and thermal power to eco-friendly for carbon reduction, the government plans to construct a 2.1GW floating photovoltaic project by investing 4.6 trillion won, as a public-private project. For success of the Saemangeum floating photovoltaic project, economic feasibility should be checked. This study defined the factors (construction cost, electricity selling price, power generation and maintenance cost) that give a effect to the volatility of the floating photovoltaic payoffs, and analyzed the volatility of payoffs during 20 years operation period. NPV and option value of the project were calculated by applying an option to abandon. According to NPV analysis, it is determined that projects are difficult to invest. But this project has economic feasibility through real options analysis. This study is expected to help decision-makers in the economic analysis of floating photovoltaic projects by using the real options analysis.

The Effect of Multi-Coal Combustion on the Generation of Slagging in a Bituminous Coal-fired Power Plant Boiler (연탄 화력발전소 보일러에서 다탄종 연소가 슬래깅 발생에 미치는 영향)

  • Park, Jihoon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.18 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, I analyzed the effect of slagging caused by blending bituminous coal and subbituminous coal while maintaining the generator output, combustion conditions, and ventilation conditions for 870MW thermal power plant designed with bituminous coal. Accordingly I proposed an acceptable method of blending coal method. the blending ratio of sub-bituminous coal was adjusted to 10%, 20%, 40%, 60%, 80%, etc. to confirm ultimate analysis, proximate analysis, ash fusion temperature change, slagging indices, etc. Proper blending coal conditions are blending with sub-bituminous coal at 40% or less, ratio of base component to acid component(B/A) is 0.4 or less or 1 or more, total alkali(TA) is 3.5 or less, fusion slagging index(Rfs) is 1,345℃ or more, and ash content is 13% or less in ultimate analysis, the ash content in proximate analysis is 15% or less, and the initial deformation temperature(IDT) should be at least 1,200℃ or more

  • PDF

Improved Operation Criteria for a Power Generation Gas Turbine on the Blade Path Temperature Variations (날개통과온도 변화에 기반한 발전용 가스터빈의 운전관리 개선)

  • Yong-Il Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.48-57
    • /
    • 2023
  • In this study, I discussed a way of the improved operation criteria to detect combustion instability in advance F-Class Gas Turbine, which adopts lean pre-mixed combustion system. The data of 16 blades path temperature thermocouple installed radially at the gas Turbine exit were collected to analyze the variation of individual blade path temperature. The cumulative variation in individual blade path temperature for one week under normal combustion conditions was confirmed to be up to 26℃. On the other hand, in the event of combustion instability, the symptoms of increased temperature variations in the individual thermocouple were mostly seen from a few days ago. Based on the results of this study, it is deemed appropriate to inspect and maintain in Ulsan Thermal Power Gas Turbine when the individual blade path temperature exceeds 50℃ of the cumulative variation for 10 days.

  • PDF

Design of PWM-Based Photo Irradiation System for Acne Treatment (여드름 치료를 위한 PWM 기반 광 조사 시스템 설계)

  • Kim, Chang-Su;Lim, Hyun-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.207-215
    • /
    • 2012
  • As one of photo dynamic therapies, the existing LED photo irradiation method with 635 nm continuous wave has most frequently been used for acne treatment, it suffered from a low energy efficiency and generation of a large amount of heat in tissues requiring improvement measures. In this thesis, a LED photo irradiation system for acne treatment has been designed using PWM(Pulse Width Modulation) mode to enhance the energy efficiency and prevent thermal destruction in tissues. System configuration consisting largely of timer module, PWM module, and photo transfer device has been designed with the use of 1 W LED at a wavelength of 660 nm for the photo transfer device to increase skin penetration depth for treatment of acne. Frequency and wave form generated by using PWM control was verified along with confirmation of output energy of 660 nm LED and surface temperatures of tissues, followed by evaluation of stable energy outputs and stability of tissues. The results indicated that whereas power loss was high and thermal destruction in tissues was exhibited when C.W mode was used to obtain the optical energy of 1 W LED at a wavelength of 660 nm for acne treatment, realization of PWM mode allowed lowering of power consumption for LED through pulse width modulation, and no occurrence of thermal destruction in tissues, suggesting that PWM mode is safer and more effective for treatment of acne than C.W mode.

Ozone Production Characteristics of the DBD Discharge the Electrode Shape at the Same Electrode surface area (동일한 전극 표면적에서 DBD방전형 내부전극 형상에 따른 오존생성특성 연구)

  • Kwon, Young-Hak;Park, Hyunmi;Song, HyunGig;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • The dielectric barrier discharge (DBD) has low efficiency due to about 70% input power is consumed as thermal energy in the discharge space. However, because of the usage of DBD ozone generator is easier than other methods. The DBD ozone generator has been widely applied for high concentration ozone generation in the industrial application. But, the low-capacity compact DBD ozone generator is not applied so far. Therefore, the DBD ozone generator is necessary to improve ozone production efficiency and reduce the capacity. In this paper, the stainless steel pipe inner electrode was designed with hall type and screw type to improve the ozone production yield. The manufactured two inner electrodes were experimented with normal type for comparison of the discharge characteristics and the ozone generating characteristics. As the experimental results, the discharge current effective value of designed inner electrodes with hall type and screw type are higher than the normal type, due to unequal electric field is formed at the boundary. However, the difference of designed and original electrodes is less than 0.1mA that has no effect on the discharge characteristic. On the other hand, the screw type inner electrode increased higher than original model about 7 times when the flow rate of the oxygen source gas was increased from $0.6{\ell}/min$ to $1.0{\ell}/min$ The reason was assumed by the flow rate of the raw gas through the inner electrode was became fast that has a cooling effect. The designed hall type and screw type inner electrodes have shown good performances in ozone generation and ozone production that better than normal type in the same electrode surface area.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.