• Title/Summary/Keyword: Thermal Power Generation

Search Result 626, Processing Time 0.027 seconds

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.

A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination (발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구)

  • Park, Sung-Seek;Kim, Woo-Joong;Kim, Yong-Hwan;Jeon, Yong-Han;Hyun, Chang-Hae;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3 (Bi0.48Sb1.52Te3의 열전특성에 대한 Pb 도핑 영향)

  • Moon, Seung Pil;Kim, Tae Wan;Kim, Sung Wng;Jeon, Woo Min;Kim, Jin Heon;Lee, Kyu Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.454-458
    • /
    • 2017
  • $Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.

Thermal Characteristic and Failure Modes and Effects Analysis for Components of Photovoltaic PCS (태양광 발전 PCS 구성부품에 대한 열적특성 및 고장모드영향분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Yoon-Bok
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • This paper is analyzed for the thermal characteristics(1 year) of the 6 components(DC breaker, DC filter(including capacitor and discharge resistance), IGBT(Insulated gate bipolar mode transistor), AC filter, AC breaker, etc.) of a photovoltaic power generation-based PCS(Power conditioning system) below 20 kW. Among the modules, the discharge resistance included in the DC filter indicated the highest heat at $125^{\circ}C$, and such heat resulting from the discharge resistance had an influence on the IGBT installed on the rear side the board. Therefore, risk priority through risk priority number(RPN) of FMEA(Failure modes and effects analysis) sheet is conducted for classification into top 10 %. According to thermal characteristics and FMEA, it is necessary to pay attention to not only the in-house defects found in the IGBT, but also the conductive heat caused by the discharge resistance. Since it is possible that animal, dust and others can be accumulated within the PCS, it is possible that the heat resulting from the discharge resistance may cause fire. Accordingly, there are two options that can be used: installing a heat sink while designing the discharge resistance, and designing the discharge resistance in a structure capable of avoiding heat conduction through setting a separation distance between discharge resistance and IGBT. This data can be used as the data for conducting a comparative analysis of abnormal signals in the process of developing a safety device for solar electricity-based photovoltaic power generation systems, as the data for examining the fire accidents caused by each module, and as the field data for setting component management priorities.

Characteristics of electric power for thermoelectric cooling & generating module (열전냉각소자와 열전발전소자의 발전특성)

  • 우병철;이희웅;이동윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.448-451
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was 0.15-0.4$\Omega$ Developed thermoelectric modules can be expected th have better properties than thermoelectric cooling modules above $70^{\circ}C$ in temperature difference between hot and cold ends.

  • PDF

Estimation for CDM of Power Generation by using Bio-diesel (바이오 디젤의 발전용 연료화 CDM 평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.132-135
    • /
    • 2009
  • Development of biofuels like ethanol and biodiesel for commercial uses is a recent phenomenon. However, the growth of ethanol and biodiesel has been impressive during the period 2000-2007yr. Globally, production of biodiesel stands around 8.3 billion liters. Europe leads the world in biodiesel production with 80% share of the global biodiesel production total. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet. Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the estimation study for effect of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power generation system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).