DOI QR코드

DOI QR Code

Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3

Bi0.48Sb1.52Te3의 열전특성에 대한 Pb 도핑 영향

  • Moon, Seung Pil (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Kim, Tae Wan (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Kim, Sung Wng (Department of Energy Science, Sungkyunkwan University) ;
  • Jeon, Woo Min (Department of Nano Applied Engineering, Kangwon National University) ;
  • Kim, Jin Heon (Department of Nano Applied Engineering, Kangwon National University) ;
  • Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University)
  • 문승필 (한국전력공사 전력연구원) ;
  • 김태완 (한국전력공사 전력연구원) ;
  • 김성웅 (성균관대학교 에너지과학과) ;
  • 전우민 (강원대학교 나노응용공학과) ;
  • 김진헌 (강원대학교 나노응용공학과) ;
  • 이규형 (강원대학교 나노응용공학과)
  • Received : 2017.04.04
  • Accepted : 2017.04.06
  • Published : 2017.07.01

Abstract

$Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.

Keywords

References

  1. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). [DOI: https://doi.org/10.1038/nmat2090]
  2. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Scripta Mater., 52, 347 (2005). [DOI: https://doi.org/10.1016/j.scriptamat.2004.10.038]
  3. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng., B, 117, 334 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.01.002]
  4. J. L. Cui, H. F. Xue, W. J. Xiu, W. Yang, and X. B. Xu, Scripta Mater., 55, 371 (2006). [DOI: https://doi.org/10.1016/j.scriptamat.2006.04.012]
  5. J. L. Cui, H. F. Xue, W. J. Xiu, L. D. Mao, P. Z. Ying, and L. Jiang, J. Alloys Compd., 460, 426 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.05.063]
  6. J. L. Cui, H. F. Xue, and W. J. Xiu, Mater. Lett., 60, 3669 (2006). [DOI: https://doi.org/10.1016/j.matlet.2006.03.080]
  7. K. H. Lee, S. M. Choi, J. W. Roh, S. W. Hwang, S. I. Kim, W. H. Shin, H. J. Park, J. H. Lee, S. W. Kim, and D. J. Yang, J. Electron. Mater., 44, 1531 (2015). [DOI: https://doi.org/10.1007/s11664-014-3446-1]
  8. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: https://doi.org/10.1126/science.1159725]
  9. Y. Pei, A. Lalonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci., 4, 2085 (2011). [DOI: https://doi.org/10.1039/C0EE00456A]
  10. H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, APL Mater., 3, 041506 (2015). [DOI: https://doi.org/10.1063/1.4908244]