• Title/Summary/Keyword: Thermal Manipulation

Search Result 24, Processing Time 0.025 seconds

HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS (골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구)

  • Rim, Jae-Suk;Kim, Byeong-Ryol;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Suk;Jun, Sang-Ho;Woo, Hyeon-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

Development of Magnetized Ferromagnetic Stainless Steel Acupuncture Needle (강자성(强磁性) 스테인리스강(鋼) 자화침(磁化鍼)의 개발)

  • Hong, Do Hyun
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.21-30
    • /
    • 2014
  • Objectives : Manufacturing and manipulation techniques of acupuncture can be interpreted as an induced electromagnetic viewpoint, as proposed in previous study. Considering from this point of view, the magnetization of needles should be essential to enhance the electromagnetic effects during the behavior of the acupuncture needling. Methods : The current disposable needles are made of non-magnetic stainless steels, so ferromagnetic materials were searched as suitable substitutes. Meanwhile, at the practical view, stainless steels are very available for the several superior properties like as corrosion resistance, strength, etc., magnetic stainless steels were first investigated. Some types of them still preserved the ferromagnetic properties of iron, so trial needles were made with them. And then magnetization of them were followed. Results : Among the hundreds types of stainless steels, martensitic or ferritic ones are ferromagnetic. The needles made with these ferromagnetic wires were magnetized, and polarized by magnetizer, and their magnetic properties were improved. Moreover, in addition to the superiority of the magnetism, the electrical and thermal conductivities of them were even better than those of the current austenitic stainless steels. Conclusions : Through the developmental study based on the electromagnetic viewpoint, the magnetized and polarized acupuncture needles were completed. This means that these needles having improved magnetism can be used to improve the electromagnetic needling effects, and moreover, their superiorities in the electrical and thermal conductivities can also give another benefits in treatments of electrical or warm needling.

Nanochannels for Manipulation of DNA Molecule using Various Fabrication Molecule

  • Hwang, M.T.;Cho, Y.H.;Lee, S.W.;Takama, N.;Fujii, T.;Kim, B.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.254-259
    • /
    • 2007
  • In this report, several fabrication techniques for the formation of various nanochannels (with $SiO_2$, Si, or Quartz) are introduced. Moreover, simple fabrication technique for generating $SiO_2$ nanochannels without nanolithography is presented. By using different nanochannels, the degree of stretching DNA molecule will be evaluated. Finally, we introduce a nanometer scale fluidic channel with electrodes on the sidewall of it, to detect and analyze single DNA molecule. The cross sectional shape of the nanotrench is V-groove, which was implemented by thermal oxidation. Electrodes were deposited through both sidewalls of nanotrench and the sealing of channel was done by covering thin poly-dimethiysiloxane (PDMS) polymer sheet.

A Review of tissue changes caused by joint immobilization and classification of contracture (관절고정에 의한 조직변화와 구축의 분류에 대한 고찰)

  • Yoon, Sang-Jib;Lee, Joon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.727-734
    • /
    • 2001
  • Contracture is defined as the lack of full passive range of motion resulting from pint, muscle or soft tissue limitationprolonged Pint immobilization will result in stress and stretch deprivation and gradual development of contracture. the tissue changes caused by immobilization may be categorized as cellular modeling, ground substance and collagen response, and tissue response. contracture can be divided into three categories according to the anatomical location of pathological changes :arthrogenic, myogenic, soft tissue contractures Therapeutic approach of contracture is thermal or cold agents application, stretch or restoration of length, traction, manipulation, mobilization positioning and restoration of function. The purpose of this article is to review current concepts of mechanical properties and synthesis of collagen tissue and the underlying pathomechanics as it relates to evaluation and treatment of contracture.

  • PDF

A Case Report on Simple Pelvic Fracture with Ostomy (단순 골반 골절된 장루술 환자 치험 1례)

  • An, Hunmo;Kim, Jun-Cheol;Na, Sam-Sik
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Objective : The objective of this study is to report the effectiveness of conservative treatment on simple pelvic fracture with ostomy. Methods : A female patient 65 years old with ostomy, who were diagnosed as simple pelvic fracture by X-ray, were treated with conservative treatment by herbal medication with acupuncture and physical therapy. We evaluated the effectiveness by checking X-ray, Digital Infrared Thermal Imaging(D.I.T.I.). Results : The symptoms of the patient got improved and X-ray showed the fracture were healing. Conclusions : Conservative korean medical treatment can be effectively used for a patient with simple pelvic fracture and ostomy.

Parametric study for Welding Residual Stresses in Nozzle of Nuclear Power Plants using Finite Element Method (유한요소법을 사용한 원전 노즐 용접잔류응력의 변수해석)

  • Kim, Wan-Jae;Lee, Kyoung-Soo;Kim, Tae-Ryong;Song, Tae-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.104-109
    • /
    • 2008
  • Distribution of welding residual stresses are mainly characterized by degrees and frequencies of thermal loads applied to materials. However, other effects as component size and clamping condition can also affect stress distributions to a certain extent thus careful manipulation of these parameters based on clear understanding of how they affect residual stresses distributions and why can be additional measure to mitigate residual stresses. This paper discusses aforementioned issues for the case of safety and relief nozzle in nuclear power plant through finite element analysis.

  • PDF

A Study on the Cytogenetics and Differentiation of Marine Animals (해양동물의 세포유전과 분화연구)

  • 손진기
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Present study was aimed to summary the recent reports of chromosomal technology such like a polyploidv, sex differentiation, gynogenesis, transgenic fish and gene manipulation. Triploid cells for rainbow trout and channel catfish were induced through thermal shocks of varying temperature levels and produced as a industrial use. A monosex fish with homogametic females of 15 species of high valued fish were produced by exposing to irradiation. It seemed that different irradiation was suitable to inactivate the sperm and block the formation in producing the gynogenetic diploids. Since 1985, transgenic fish have been successfully produced by microinjecting or electroporating desired foreign DNA into unfertilized or newly fertilized eggs using about 40 fish species. More recently, transgenic fish have also been produced by infecting newly fertilized eggs with pantropic, defective retroviral vectors carrying desired foreign DNA. These transgenic fish can serve as excellent experimental models for basic scientific investigations as well as in marine biotechnological applications.

  • PDF

Thermal Stress and Muscle Development in Early Posthatch Broilers (부화 초기 육계의 열 스트레스와 근육발달)

  • Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.255-265
    • /
    • 2021
  • Global warming and scorching summer seasons affect the growth ability of broilers and animal welfare. In modern broilers, vital organs, such as the heart and lungs, grow disproportionally under intensive selection, making it difficult to adapt to warmer climates. Changes in environmental temperature can affect muscle formation during embryonic development and the early posthatching period. Satellite cells are highly sensitive to heat stress. Heat stress affects the proliferation and differentiation activity of satellite cells and muscle growth and structure. Therefore, thermal manipulation during broiler chick embryogenesis and environmental temperature management at the beginning of hatching are critical for the development and growth of broiler muscles. This review focuses on the thermoregulation mechanism of birds, the muscle development process of broilers, and the function of satellite cells, the relationship between heat stress and muscle development of chicks shortly after hatching, and studies on heat resistance and muscle growth of broilers.

THERMO-SENSITIVITY OF N-VINYL PYRROLODONE-CO-2- HYDROXYETHYLMETHACRYLATE HYDROGELS

  • Irina Nam;Park, Jung-Ki;Lee, Seong-Nam;Sung, Shi-Joon;Min, Yong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.9-15
    • /
    • 2004
  • The copolymerization of HEMA with different hydrophilic and hydrophobic co-monomers allows for the manipulation of their intrinsic properties. 2-Hydroxyethylmethacrylate (HEMA)-based hydrogels thus are of great interest due to their outstanding physico-mechanical properties and chemical stability. The idea to use HEMA in order to create thermo-sensitive polymers was based on our assumption that thermal-sensitivity comes from a suitable hydrophilic-hydrophobic balance of macromolecules. In this work we have chosen N-vinyl pyrrolidone as a hydrophilic co-monomer with the relatively hydrophobic HEMA due to its good polymerizing properties as well as its non-toxicity in a polymer state and deserved recognition as a biocompatible material. As a result, copolymerization of NVP and HEMA was successful in obtaining new types of thermo-sensitive polymers composed of hydrophilic and hydrophobic monomers.

  • PDF

Filtration performance of granular ceramic filters produced at various molding pressures (다양한 성형압력조건에서 제조된 입상 세라믹필터의 집진성능)

  • Hyun-Jin Choi;Han-Bin Kim;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.20 no.2
    • /
    • pp.57-68
    • /
    • 2024
  • A silicon carbide (SiC) ceramic filter is an effective component for hot flue gas cleaning because of its high collection efficiency, high thermal shock resistance, and excellent mechanical strength. The effect of molding pressure in the production of SiC granular ceramic filters, on the mechanical strength and filtration performance, was investigated in this work. It was found that the ceramic filters produced at molding pressures less than 20 MPa have low mechanical strength and that this result was caused by weak physical interaction among the ceramic powders due to defects and cracks. On the other hand, the filter quality factor(qF), which represents filtration performance of filter media, decreased with increasing the molding pressure due to the drastic increase in pressure drop. Ceramic filter performance factor(qFM), which is the manipulation of maximum mechanical strength and qF, was introduced to consider both mechanical strength and filtration performance in this study. As a result, molding pressure of 30 MPa was desirable to produce a SiC granular ceramic filter based on qFM.