DOI QR코드

DOI QR Code

Nanochannels for Manipulation of DNA Molecule using Various Fabrication Molecule

  • Hwang, M.T. (CIRMM/Institute of Industrial Science, The University of Tokyo) ;
  • Cho, Y.H. (CIRMM/Institute of Industrial Science, The University of Tokyo) ;
  • Lee, S.W. (CIRMM/Institute of Industrial Science, The University of Tokyo) ;
  • Takama, N. (CIRMM/Institute of Industrial Science, The University of Tokyo) ;
  • Fujii, T. (CIRMM/Institute of Industrial Science, The University of Tokyo) ;
  • Kim, B.J. (CIRMM/Institute of Industrial Science, The University of Tokyo)
  • Published : 2007.12.31

Abstract

In this report, several fabrication techniques for the formation of various nanochannels (with $SiO_2$, Si, or Quartz) are introduced. Moreover, simple fabrication technique for generating $SiO_2$ nanochannels without nanolithography is presented. By using different nanochannels, the degree of stretching DNA molecule will be evaluated. Finally, we introduce a nanometer scale fluidic channel with electrodes on the sidewall of it, to detect and analyze single DNA molecule. The cross sectional shape of the nanotrench is V-groove, which was implemented by thermal oxidation. Electrodes were deposited through both sidewalls of nanotrench and the sealing of channel was done by covering thin poly-dimethiysiloxane (PDMS) polymer sheet.

Keywords

References

  1. J. Han, H. G. Craighead, 'Separation of long DNA molecules in a microfabricated entropic trap array', Science, Vol. 288, pp.1026-1029, 2000 https://doi.org/10.1126/science.288.5468.1026
  2. J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y Chou, E. C. Cox and J. C. Sturm, 'Micro-and nanofluidics for DNA analysis', Anal Bioanal Chem, Vol. 378, pp.1678-1692, 2004 https://doi.org/10.1007/s00216-004-2526-0
  3. J. L. Perry, S. G. Kandlikar, 'Review of fabrication of nanochannels for single phase liquid flow', Microjluid Nanojluid, Vol. 2, pp.185-193, 2006
  4. C. K. Harnett, G. W. Coates, H. G. Craighead, 'Heatdepolymerizable polycarbonates as electron beam pattemable sacrificial layers for nanofluidics', J Vac. Sci. Technol. B, Vol. 19, pp.2842-2845, 2001 https://doi.org/10.1116/1.1409383
  5. K. Wang, S. Yue, L. Wang, A. Jin, C. Gu, P. Wang, H. Wang, X. Xu, Y Wang and H. Niu, 'Nanofluidic channels fabrication and manipulation of DNA molecules', lEE Proc-Nanobiotechnol., Vol. 155, pp.11-15, 2006
  6. L. J. Guo, X. Cheng and C. F. Chou, 'Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching', Nano letters, Vol.4, No.1, pp.69-73, 2004 https://doi.org/10.1021/nl034877i
  7. G. J. Cheng, D. Pirzada and P. Dutta, 'Design and fabrication of a hybrid nanofluidic channel', J. Microlith. Microfab. Microsyst., Vol. 4, pp.1537-1624,2005
  8. P. Mao, J. Han, 'Fabrication and Characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding', Lab on a chip, Vol. 5, pp.837-844,2005 https://doi.org/10.1039/b502809d
  9. Y.H. Cho, S.W. Lee, B.J. Kim, and T. Fujii, 'Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection', Nanotechnology, Vol.18, No. 46, pp.46-53, Nov. 2007