• Title/Summary/Keyword: Thermal Infrared

Search Result 1,307, Processing Time 0.027 seconds

A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens (열적외선 카메라용 광학계 생산성 향상에 관한 연구)

  • Kim, Sung-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Thermal Characterization of Individual Pixels in Microbolometer Image Sensors by Thermoreflectance Microscopy

  • Ryu, Seon Young;Choi, Hae Young;Kim, Dong Uk;Kim, Geon Hee;Kim, Taehyun;Kim, Hee Yeoun;Chang, Ki Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.533-538
    • /
    • 2015
  • Thermal characterization of individual pixels in microbolometer infrared image sensors is needed for optimal design and improved performance. In this work, we used thermoreflectance microscopy on uncooled microbolometer image sensors to investigate the thermal characteristics of individual pixels. Two types of microbolometer image sensors with a shared-anchor structure were fabricated and thermally characterized at various biases and vacuum levels by measuring the temperature distribution on the surface of the microbolometers. The results show that thermoreflectance microscopy can be a useful thermal characterization tool for microbolometer image sensors.

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

High Resolution Electronic Processor Design for Thermal Imager with 320x240 Staring Array Infrared Detector (320x240 적외선 배열검출기를 이용한 고분해능 열상 신호처리기 구현)

  • Hong, Seok-Min;Yu, Wee-Kyung;Yoon, Eun-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.111-117
    • /
    • 2006
  • This paper describes the design principles and methods of electronic processor for thermal imager with 320$\times$240 staring array infrared detector. For the detector's nonuniformity correction and excellent image quality, we have designed the multi-point correction method using the defocusing technique of the optics. And to enhance the image of low contrast and improve the detection capability, the new technique of histogram processing has been designed. Through these image processing techniques, we have developed the high quality thermal imager and acquired a satisfactory thermal image. The result of MRTD(Minimum Resolvable Temperature Difference) is $0.1^{\circ}C$ at 4cycles/mard.

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

The Detection of Heat Emission to Solar Cell using UAV-based Thermal Infrared Sensor (UAV 기반 열적외선 센서를 이용한 태양광 셀의 발열 검출)

  • Lee, Geun Sang;Lee, Jong Jo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Many studies have been implemented to manage solar plant being supplied widely in recent years. This study analyzed heat emission of solar cell using unmanned aerial vehicle(UAV)-based thermal infrared sensor, and major conclusions are as belows. Firstly, orthomosaic image and digital surface model(DSM) data were acquired using UAV-based RGB sensor, and solar light module layer necessary to analyze the heat emission of solar cell was constructed by these data. Also as a result of horizontal error into validation points using virtual reference service(VRS) survey for evaluating the location accuracy of solar light module layer, higher location accuracy could be acquired like standard error of $dx={\pm}2.4cm$ and $dy={\pm}3.2cm$. And this study installed rubber patch to test the heat emission of solar cell and could analyzed efficiently the location of rubber patch being emitted heat using UAV-based thermal infrared sensor. Also standard error showd as ${\pm}3.5%$ in analysis between calculated cell ratio by rubber patch and analyzed cell ratio by UAV-based thermal infrared sensor. Therefore, it could be efficiently analyzed to heat emission of solar cell using UAV-based thermal infrared sensor. Also efficient maintenance of solar plant could be possible through extracting the code of solar light module being emitted of heat automatically.