• 제목/요약/키워드: Thermal Inertia

검색결과 93건 처리시간 0.024초

Thermal Modeling of Comet-Like Objects from AKARI Observations

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Usui, Fumihiko
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.49.3-50
    • /
    • 2017
  • There have been recent studies which revealed a tendency that thermal inertia decreases with the size of asteroidal bodies, and suggestions that thermal inertias of cometary bodies should be much smaller than those asteroidal counterparts, regardless of comets' nuclear sizes, which hints a way to differentiate cometary candidates from asteroids using thermal inertia information. We thus selected two comet-like objects from AKARI satellite of JAXA, namely, 107P/ (4015) Wilson-Harrington and P/2006 HR30 (Siding Spring), and applied simple thermophysical model to test the idea. Both targets did not show any comet-like activity during the observations. From the model, we found Wilson-Harrington to have size of 3.7-4.4 km, geometric albedo 0.040-0.055 and thermal inertia of 100-250 J m-2 K-1 s-0.5, which coincide with previous works, and HR30 to have size of 24-27 km, geomoetric albedo of 0.035-0.045 with thermal inertia of 250-1000 J m-2 K-1 s-0.5. HR30 is found to have the rotation pole near the ecliptic plane (the latitude between -20 and +60 deg). Based on the results, we conjecture that comet-like objects are not clearly distinguishable from asteroidal counterpart using thermal inertia.

  • PDF

Thermal Modeling of Comet-Like Asteroids

  • Park, Yoonsoo Bach;Ishiguro, Masateru;Usui, Fumihiko
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.81.4-82
    • /
    • 2016
  • Recent analysis on asteroidal thermophysical property revealed that there is a tendency that their thermal inertia decrease with their sizes at least for main belt asteroids. However, little is known about the thermal properties of comet-like bodies. In this work we utilized a simple thermophysical model to calculate the thermal inertia of a bare nucleus of comet P/2006 HR30 (Siding Spring) and an asteroid in comet-like orbit 4015 Wilson-Harrington from AKARI observation data. It is also shown that the determination of their thermal inertia is very sensitive to their spin vector, while the diameter is rather easy to be constrained to a certain range by combining multi-wavelength observational data. Thus, we set diameter and hence the geometric albedo as fixed parameters, and inferred the spin vector and thermal inertia of the targets. Further detailed analyses on these cometary bodies will shed light on our understanding of the detailed surfacial characteristics of them.

  • PDF

소형 재생 가스터빈의 동적 작동특성 해석 (Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine)

  • 김재환;전용준;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

Thermal Modeling of Comet-Like Asteroids from AKARI Observation

  • Park, Yoonsoo Bach;Ishiguro, Masateru;Usui, Fumihiko
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.50.3-51
    • /
    • 2016
  • Recent analysis on the thermophysical property of asteroids revealed that their thermal inertia decrease with their sizes at least for main belt asteroids. However, little is known about that of comet-like bodies. In this work we utilized a simple thermophysical model (TPM) to calculate the thermal inertia of a bare nucleus of the comet P/2006 HR30 (Siding Spring) and an asteroid in comet-like orbit 107P/(4015) Wilson-Harrington from AKARI observation data. From five spectroscopic observations of the targets, we find out that the former has thermal inertia of around $2,000J\;m^{-2}K^{-1}s^{-1/2}$ (using pV = 0.055) and the latter has about $1,000-2000J\;m^{-2}K^{-1}s^{-1/2}$ (using pV = 0.055 and 0.043, respectively). These are high enough for both of them to deposit water ice at few centimeters depth, and hence it is difficult to say they are cometary based on the results of this study. These values, however, dependent significantly on the errors of observation and the uncertainties of the input parameters, as well as other conditions which are ignored in simple TPM approach, such as shape model and surface roughness. Further detailed analyses on these cometary bodies will shed light on our understanding of the detailed surfacial characteristics of them.

  • PDF

Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment

  • Dong, K.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.395-410
    • /
    • 2006
  • This paper reports the result of an investigation into wave propagation in orthotropic laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on the wave characteristics curves are discussed through numerical results. The solving method presented in the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical shells with various laminated material, layer numbers and thickness in hydrothermal environment and some meaningful and interesting results in this paper are helpful for the application and the design of the ultrasonic inspection techniques and structural health monitoring.

강한 음향장에 구속된 고압 액적의 연소 (Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode)

  • 김성엽;신현호;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

펌프 회전차의 관성모멘트 제공에 의한 KALIMER-600 원자로 풀 과도 성능 분석 (Transient Performance Analysis of the Reactor Pool in KALIMER-600 with an Inertia Moment of a Pump Flywheel)

  • 한지웅;어재혁;이태호;김성오
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.418-426
    • /
    • 2009
  • The effect of an inertia moment of a pump flywheel on the thermal-hydraulic behaviors of the KALIMER-600(Korea Advanced LIquid MEtal Reactor) reactor pool during an early-phase of a loss of normal heat sink accident was investigated. The thermal-hydraulic analyses for a steady and a transient state were made by using the COMMIX-1AR/P code. In the present analysis a quarter of the reactor geometry was modeled in a cylindrical coordinate system, which includes a quarter of a reactor core and a UIS, a half of a DHX and a pump and a full IHX. In order to evaluate the effects of an inertia moment of the pump flywheel, a coastdown flow whose flow halving time amounts to 3.69 seconds was supplied to a natural circulation flow in the reactor vessel. Thermal-hydraulic behaviors in the reactor vessel were compared to those without the flywheel equipment. The numerical results showed a good agreement with the design values in a steady state. It was found that the inertia moment contributes to an increase in the circulation flow rate during the first 40 seconds, however to a decrease of it there after. It was also found that the flow stagnant region induced by a core exit overcooling decelerated the flow rate. The appearance of the first-peak temperature was delayed by the flow coastdown during the initial stages after a reactor trip.

열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석 (Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System)

  • 박형준;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Tounsi, Abdelouahed;Benguediab, Soumia;Adda Bedia, El Abbas;Semmah, Abdelwahed;Zidour, Mohamed
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.