References
- Amara, A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comp. Mater. Sci., 51, 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
- Batra, R.C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solids Stuct., 44, 7577-7596. https://doi.org/10.1016/j.ijsolstr.2007.04.029
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4707. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal continuum field theories, Springer, New York.
- Fung, Y.C. (1965), Foundation of solid mechanics, Prentice-Hall, Englewood Cliffs, NJ.
- Girifalco, L.A. and Lad, R.A. (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Chem. Phys., 25, 693-701. https://doi.org/10.1063/1.1743030
- Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Chem. Phys., 95, 5370-5371. https://doi.org/10.1021/j100167a002
- Harik, V.M. (2001), "Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods", Solid. State. Commun., 120, 331-335. https://doi.org/10.1016/S0038-1098(01)00383-0
- Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5
- Heireche, H., Tounsi, A., Benzair, A. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
- Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008b), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
- Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
-
Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and
$B_xC_yN_z$ composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502 - Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99, 073510. https://doi.org/10.1063/1.2189213
- Murmu, T. and Pradhan, S.C. (2008), "Buckling analysis of beam on Winkler foundation by using mdqm and nonlocal theory", J. Aerosp. Sci. Technol., 60, 206-215.
- Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotubes embedded in an elastic medium based on nonlocal continuum mechanics", Physica E., 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
- Murmu, T. and Pradhan, S.C. (2009b), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E., 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
- Murmu, T. and Pradhan, S.C. (2009c), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comp. Mater. Sci., 46, 854-869. https://doi.org/10.1016/j.commatsci.2009.04.019
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511. https://doi.org/10.1063/1.2833431
- Reulet, B., Yu, A., Kasumov, M., Kociak, R., Deblock, I., Khodos, I., Yu, B., Gorbatov, V., Volkov, T., Journet, C. and Bouchiat, H. (2000), "Acoustoelectric effects in carbon nanotubes", Phys. Rev. Lett., 85, 2829-2832. https://doi.org/10.1103/PhysRevLett.85.2829
- Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejo, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B., 59, 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678
- Sears, A. and Batra, R.C. (2006), "Buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B., 73, 085410. https://doi.org/10.1103/PhysRevB.73.085410
- Senthilkumar, V., Pradhan, S.C. and Prathap, G. (2010), "Buckling analysis of carbon nanotube based on nonlocal Timoshenko beam theory using differential transform method", Adv. Sci. Lett., 3, 415-421. https://doi.org/10.1166/asl.2010.1145
- Silvestre, N., Wang, C.M., Zhang, Y.Y. and Xiang, Y. (2011), "Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio", Comp. Struct., 93, 1683-1691 https://doi.org/10.1016/j.compstruct.2011.01.004
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281-7288. https://doi.org/10.1063/1.1625437
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E., 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11, 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
- Tounsi, A., Heireche, H., Benzair, A. and Mechab, I. (2009a), "Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory", J. Phys.-Condens. Matter., 21, 448001. https://doi.org/10.1088/0953-8984/21/44/448001
- Tounsi, A., Heireche, H. and Adda Bedia, E.A. (2009b), "Comment on "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory" [J. Appl. Phys. 103, 024302 (2008)] ", J. Appl. Phys., 105, 126105. https://doi.org/10.1063/1.3153960
- Wang, L.F. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B., 71, 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301. https://doi.org/10.1063/1.2141648
- Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39, 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
- Wang, Q. and Wang, C.M. (2007), "On constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15, 659-664. https://doi.org/10.1088/0964-1726/15/2/050
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys Rev Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernholc, J. (1997), "High strain rate fracture and C-chain unraveling in carbon nanotubes", Comput. Mater. Sci., 8, 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5
- Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128, 419-424. https://doi.org/10.1115/1.2203102
Cited by
- A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
- Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
- Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
- Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
- On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
- Nonlocal and shear effects on column buckling of single-layered membranes from stocky single-walled carbon nanotubes vol.79, 2015, https://doi.org/10.1016/j.compositesb.2015.04.030
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0591-9
- Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
- Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach vol.89, pp.1, 2014, https://doi.org/10.1007/s10665-014-9707-4
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Revisiting the free transverse vibration of embedded single-layer graphene sheets acted upon by an in-plane magnetic field vol.28, pp.9, 2014, https://doi.org/10.1007/s12206-014-0811-1
- Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0452-6
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams vol.48, pp.3, 2013, https://doi.org/10.12989/sem.2013.48.3.351
- On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity vol.45, pp.2, 2015, https://doi.org/10.1007/s13538-015-0306-2
- Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0506-x
- Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
- Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbon nanotubes vol.276, 2014, https://doi.org/10.1016/j.cma.2014.03.008
- Investigation of Thermal and Chirality Effects on Vibration of Single-Walled Carbon Nanotubes Embedded in a Polymeric Matrix Using Nonlocal Elasticity Theories vol.52, pp.4, 2016, https://doi.org/10.1007/s11029-016-9606-z
- A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0322-2
- Nonlocal Thermal Buckling Analysis of Embedded Magneto-Electro-Thermo-Elastic Nonhomogeneous Nanoplates vol.40, pp.4, 2016, https://doi.org/10.1007/s40997-016-0029-1
- Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
- On the static stability of nonlocal nanobeams using higher-order beam theories vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.051
- Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory vol.29, pp.10, 2015, https://doi.org/10.1007/s12206-015-0923-2
- Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix vol.3, pp.1, 2015, https://doi.org/10.12989/anr.2015.3.1.029
- Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
- Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams vol.23, pp.12, 2016, https://doi.org/10.1080/15376494.2015.1091524
- A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams vol.40, pp.5-6, 2016, https://doi.org/10.1016/j.apm.2015.11.026
- Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
- Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment vol.7, pp.2, 2016, https://doi.org/10.1080/19475411.2016.1191556
- On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
- A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.693
- Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
- Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
- Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
- A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
- Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
- A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
- A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
- Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115040
- A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes vol.59, 2014, https://doi.org/10.1016/j.physe.2014.01.020
- Thermal Effect on Vibration Characteristics of Armchair and Zigzag Single-Walled Carbon Nanotubes Using Nonlocal Parabolic Beam Theory vol.23, pp.3, 2015, https://doi.org/10.1080/1536383X.2013.787605
- A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
- Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1177/1099636217723186
- Thermal Post-buckling Analysis of Moderately Thick Nanobeams 2017, https://doi.org/10.1007/s40996-017-0084-x
- Free vibration of symmetric and sigmoid functionally graded nanobeams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0324-0
- Surface and thermal load effects on the buckling of curved nanowires vol.17, pp.4, 2014, https://doi.org/10.1016/j.jestch.2014.07.003
- Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models vol.39, pp.15, 2015, https://doi.org/10.1016/j.apm.2015.01.013
- Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
- Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
- On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
- A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
- Modeling of Axially Loaded Nanowires Embedded in Elastic Substrate Media with Inclusion of Nonlocal and Surface Effects vol.2013, 2013, https://doi.org/10.1155/2013/635428
- Buckling of FG circular/annular Mindlin nanoplates with an internal ring support using nonlocal elasticity vol.40, pp.4, 2016, https://doi.org/10.1016/j.apm.2015.09.003
- Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
- Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model vol.246, 2016, https://doi.org/10.1016/j.sna.2016.05.009
- Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory: An analytical solution vol.100, 2016, https://doi.org/10.1016/j.spmi.2016.08.046
- A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
- Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory vol.116, pp.16, 2014, https://doi.org/10.1063/1.4898759
- Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
- Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model vol.3, pp.2, 2014, https://doi.org/10.12989/amr.2014.3.2.077
- Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
- A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
- A comparative study on estimation of critical buckling temperatures of single-walled carbon nanotubes vol.99, 2016, https://doi.org/10.1016/j.compositesb.2016.05.057
- A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium vol.60, 2014, https://doi.org/10.1016/j.compositesb.2013.12.058
- Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams vol.24, pp.11, 2017, https://doi.org/10.1080/15376494.2016.1196795
- Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
- Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.07.013
- Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
- AN INVESTIGATION ON THE CHARACTERISTICS OF BENDING, BUCKLING AND VIBRATION OF NANOBEAMS VIA NONLOCAL BEAM THEORY vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500850
- Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
- Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids vol.119, 2017, https://doi.org/10.1016/j.ijengsci.2017.06.002
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
- Multiscale Modeling and Mechanical Properties of Zigzag CNT and Triple-Layer Graphene Sheet Based on Atomic Finite Element Method vol.33, pp.1661-9897, 2015, https://doi.org/10.4028/www.scientific.net/JNanoR.33.92
- On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory vol.133, pp.11, 2018, https://doi.org/10.1140/epjp/i2018-12304-7
- Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
- Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
- Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
- Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2013, https://doi.org/10.12989/sem.2017.62.2.143
- A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
- Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
- Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2013, https://doi.org/10.12989/anr.2018.6.1.057
- Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients vol.144, pp.None, 2018, https://doi.org/10.1016/j.ijmecsci.2018.06.018
- Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
- Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2013, https://doi.org/10.12989/anr.2019.7.1.051
- On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates vol.7, pp.1, 2013, https://doi.org/10.12989/anr.2019.7.1.063
- Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2013, https://doi.org/10.12989/anr.2019.7.2.089
- A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
- Finite Element Model of Functionally Graded Nanobeam for Free Vibration Analysis vol.11, pp.2, 2019, https://doi.org/10.24107/ijeas.569798
- Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates vol.7, pp.5, 2013, https://doi.org/10.12989/anr.2019.7.5.293
- Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique vol.7, pp.5, 2013, https://doi.org/10.12989/anr.2019.7.5.311
- Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
- Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2013, https://doi.org/10.12989/anr.2019.7.6.405
- An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory vol.40, pp.12, 2013, https://doi.org/10.1007/s10483-019-2545-8
- Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings vol.8, pp.1, 2013, https://doi.org/10.12989/anr.2020.8.1.025
- Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions vol.8, pp.2, 2013, https://doi.org/10.12989/anr.2020.8.2.169
- On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2013, https://doi.org/10.1088/1402-4896/ab43b6
- Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings vol.100, pp.2, 2020, https://doi.org/10.1007/s11071-020-05565-y
- Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2013, https://doi.org/10.12989/anr.2020.8.3.191
- Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2013, https://doi.org/10.12989/anr.2020.8.4.283
- Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2013, https://doi.org/10.12989/anr.2020.8.4.307
- Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
- Frequency, bending and buckling loads of nanobeams with different cross sections vol.9, pp.2, 2013, https://doi.org/10.12989/anr.2020.9.2.091
- Nonlinear buckling and free vibration of curved CNTs by doublet mechanics vol.26, pp.2, 2013, https://doi.org/10.12989/sss.2020.26.2.213
- Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes vol.36, pp.4, 2013, https://doi.org/10.1007/s00366-019-00790-5
- Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2013, https://doi.org/10.12989/anr.2021.10.1.001
- Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading vol.78, pp.1, 2013, https://doi.org/10.12989/sem.2021.78.1.015
- Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083
- Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2013, https://doi.org/10.12989/anr.2021.11.2.203