DOI QR코드

DOI QR Code

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Received : 2012.07.10
  • Accepted : 2013.02.18
  • Published : 2013.03.25

Abstract

The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.

Keywords

References

  1. Amara, A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  2. Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E, 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
  3. Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comp. Mater. Sci., 51, 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
  4. Batra, R.C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solids Stuct., 44, 7577-7596. https://doi.org/10.1016/j.ijsolstr.2007.04.029
  5. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  6. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4707. https://doi.org/10.1063/1.332803
  7. Eringen, A.C. (2002), Nonlocal continuum field theories, Springer, New York.
  8. Fung, Y.C. (1965), Foundation of solid mechanics, Prentice-Hall, Englewood Cliffs, NJ.
  9. Girifalco, L.A. and Lad, R.A. (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Chem. Phys., 25, 693-701. https://doi.org/10.1063/1.1743030
  10. Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Chem. Phys., 95, 5370-5371. https://doi.org/10.1021/j100167a002
  11. Harik, V.M. (2001), "Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods", Solid. State. Commun., 120, 331-335. https://doi.org/10.1016/S0038-1098(01)00383-0
  12. Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5
  13. Heireche, H., Tounsi, A., Benzair, A. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  14. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008b), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
  15. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  16. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and $B_xC_yN_z$ composite nanotubes", Phys. Rev. Lett., 80, 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502
  17. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966
  18. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99, 073510. https://doi.org/10.1063/1.2189213
  19. Murmu, T. and Pradhan, S.C. (2008), "Buckling analysis of beam on Winkler foundation by using mdqm and nonlocal theory", J. Aerosp. Sci. Technol., 60, 206-215.
  20. Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotubes embedded in an elastic medium based on nonlocal continuum mechanics", Physica E., 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  21. Murmu, T. and Pradhan, S.C. (2009b), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E., 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
  22. Murmu, T. and Pradhan, S.C. (2009c), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comp. Mater. Sci., 46, 854-869. https://doi.org/10.1016/j.commatsci.2009.04.019
  23. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  24. Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
  25. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  26. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511. https://doi.org/10.1063/1.2833431
  27. Reulet, B., Yu, A., Kasumov, M., Kociak, R., Deblock, I., Khodos, I., Yu, B., Gorbatov, V., Volkov, T., Journet, C. and Bouchiat, H. (2000), "Acoustoelectric effects in carbon nanotubes", Phys. Rev. Lett., 85, 2829-2832. https://doi.org/10.1103/PhysRevLett.85.2829
  28. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejo, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B., 59, 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678
  29. Sears, A. and Batra, R.C. (2006), "Buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B., 73, 085410. https://doi.org/10.1103/PhysRevB.73.085410
  30. Senthilkumar, V., Pradhan, S.C. and Prathap, G. (2010), "Buckling analysis of carbon nanotube based on nonlocal Timoshenko beam theory using differential transform method", Adv. Sci. Lett., 3, 415-421. https://doi.org/10.1166/asl.2010.1145
  31. Silvestre, N., Wang, C.M., Zhang, Y.Y. and Xiang, Y. (2011), "Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio", Comp. Struct., 93, 1683-1691 https://doi.org/10.1016/j.compstruct.2011.01.004
  32. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281-7288. https://doi.org/10.1063/1.1625437
  33. Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E., 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003
  34. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11, 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  35. Tounsi, A., Heireche, H., Berrabah, H.M. and Mechab, I. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
  36. Tounsi, A., Heireche, H., Benzair, A. and Mechab, I. (2009a), "Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory", J. Phys.-Condens. Matter., 21, 448001. https://doi.org/10.1088/0953-8984/21/44/448001
  37. Tounsi, A., Heireche, H. and Adda Bedia, E.A. (2009b), "Comment on "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory" [J. Appl. Phys. 103, 024302 (2008)] ", J. Appl. Phys., 105, 126105. https://doi.org/10.1063/1.3153960
  38. Wang, L.F. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B., 71, 195412. https://doi.org/10.1103/PhysRevB.71.195412
  39. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301. https://doi.org/10.1063/1.2141648
  40. Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39, 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
  41. Wang, Q. and Wang, C.M. (2007), "On constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
  42. Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15, 659-664. https://doi.org/10.1088/0964-1726/15/2/050
  43. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys Rev Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
  44. Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernholc, J. (1997), "High strain rate fracture and C-chain unraveling in carbon nanotubes", Comput. Mater. Sci., 8, 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5
  45. Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128, 419-424. https://doi.org/10.1115/1.2203102

Cited by

  1. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  2. Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
  3. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
  4. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
  5. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
  6. Nonlocal and shear effects on column buckling of single-layered membranes from stocky single-walled carbon nanotubes vol.79, 2015, https://doi.org/10.1016/j.compositesb.2015.04.030
  7. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
  8. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0591-9
  9. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  10. Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach vol.89, pp.1, 2014, https://doi.org/10.1007/s10665-014-9707-4
  11. A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
  12. Revisiting the free transverse vibration of embedded single-layer graphene sheets acted upon by an in-plane magnetic field vol.28, pp.9, 2014, https://doi.org/10.1007/s12206-014-0811-1
  13. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0452-6
  14. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  15. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  16. Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams vol.48, pp.3, 2013, https://doi.org/10.12989/sem.2013.48.3.351
  17. On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity vol.45, pp.2, 2015, https://doi.org/10.1007/s13538-015-0306-2
  18. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0506-x
  19. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
  20. Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbon nanotubes vol.276, 2014, https://doi.org/10.1016/j.cma.2014.03.008
  21. Investigation of Thermal and Chirality Effects on Vibration of Single-Walled Carbon Nanotubes Embedded in a Polymeric Matrix Using Nonlocal Elasticity Theories vol.52, pp.4, 2016, https://doi.org/10.1007/s11029-016-9606-z
  22. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0322-2
  23. Nonlocal Thermal Buckling Analysis of Embedded Magneto-Electro-Thermo-Elastic Nonhomogeneous Nanoplates vol.40, pp.4, 2016, https://doi.org/10.1007/s40997-016-0029-1
  24. Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
  25. On the static stability of nonlocal nanobeams using higher-order beam theories vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.051
  26. Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory vol.29, pp.10, 2015, https://doi.org/10.1007/s12206-015-0923-2
  27. Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix vol.3, pp.1, 2015, https://doi.org/10.12989/anr.2015.3.1.029
  28. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  29. Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams vol.23, pp.12, 2016, https://doi.org/10.1080/15376494.2015.1091524
  30. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams vol.40, pp.5-6, 2016, https://doi.org/10.1016/j.apm.2015.11.026
  31. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
  32. Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment vol.7, pp.2, 2016, https://doi.org/10.1080/19475411.2016.1191556
  33. On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
  34. A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.693
  35. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
  36. Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
  37. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
  38. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
  39. A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
  40. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  41. A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
  42. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  43. A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
  44. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
  45. Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115040
  46. A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes vol.59, 2014, https://doi.org/10.1016/j.physe.2014.01.020
  47. Thermal Effect on Vibration Characteristics of Armchair and Zigzag Single-Walled Carbon Nanotubes Using Nonlocal Parabolic Beam Theory vol.23, pp.3, 2015, https://doi.org/10.1080/1536383X.2013.787605
  48. A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
  49. Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1177/1099636217723186
  50. Thermal Post-buckling Analysis of Moderately Thick Nanobeams 2017, https://doi.org/10.1007/s40996-017-0084-x
  51. Free vibration of symmetric and sigmoid functionally graded nanobeams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0324-0
  52. Surface and thermal load effects on the buckling of curved nanowires vol.17, pp.4, 2014, https://doi.org/10.1016/j.jestch.2014.07.003
  53. Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models vol.39, pp.15, 2015, https://doi.org/10.1016/j.apm.2015.01.013
  54. Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
  55. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
  56. On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
  57. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
  58. Modeling of Axially Loaded Nanowires Embedded in Elastic Substrate Media with Inclusion of Nonlocal and Surface Effects vol.2013, 2013, https://doi.org/10.1155/2013/635428
  59. Buckling of FG circular/annular Mindlin nanoplates with an internal ring support using nonlocal elasticity vol.40, pp.4, 2016, https://doi.org/10.1016/j.apm.2015.09.003
  60. Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
  61. Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model vol.246, 2016, https://doi.org/10.1016/j.sna.2016.05.009
  62. Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory: An analytical solution vol.100, 2016, https://doi.org/10.1016/j.spmi.2016.08.046
  63. A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
  64. Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory vol.116, pp.16, 2014, https://doi.org/10.1063/1.4898759
  65. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
  66. Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model vol.3, pp.2, 2014, https://doi.org/10.12989/amr.2014.3.2.077
  67. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
  68. A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
  69. A comparative study on estimation of critical buckling temperatures of single-walled carbon nanotubes vol.99, 2016, https://doi.org/10.1016/j.compositesb.2016.05.057
  70. A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium vol.60, 2014, https://doi.org/10.1016/j.compositesb.2013.12.058
  71. Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams vol.24, pp.11, 2017, https://doi.org/10.1080/15376494.2016.1196795
  72. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
  73. Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.07.013
  74. Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
  75. AN INVESTIGATION ON THE CHARACTERISTICS OF BENDING, BUCKLING AND VIBRATION OF NANOBEAMS VIA NONLOCAL BEAM THEORY vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500850
  76. Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
  77. Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids vol.119, 2017, https://doi.org/10.1016/j.ijengsci.2017.06.002
  78. Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
  79. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  80. Multiscale Modeling and Mechanical Properties of Zigzag CNT and Triple-Layer Graphene Sheet Based on Atomic Finite Element Method vol.33, pp.1661-9897, 2015, https://doi.org/10.4028/www.scientific.net/JNanoR.33.92
  81. On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory vol.133, pp.11, 2018, https://doi.org/10.1140/epjp/i2018-12304-7
  82. Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  83. Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  84. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  85. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  86. Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
  87. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2013, https://doi.org/10.12989/sem.2017.62.2.143
  88. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  89. Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
  90. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2013, https://doi.org/10.12989/anr.2018.6.1.057
  91. Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients vol.144, pp.None, 2018, https://doi.org/10.1016/j.ijmecsci.2018.06.018
  92. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  93. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2013, https://doi.org/10.12989/anr.2019.7.1.051
  94. On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates vol.7, pp.1, 2013, https://doi.org/10.12989/anr.2019.7.1.063
  95. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2013, https://doi.org/10.12989/anr.2019.7.2.089
  96. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  97. Finite Element Model of Functionally Graded Nanobeam for Free Vibration Analysis vol.11, pp.2, 2019, https://doi.org/10.24107/ijeas.569798
  98. Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates vol.7, pp.5, 2013, https://doi.org/10.12989/anr.2019.7.5.293
  99. Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique vol.7, pp.5, 2013, https://doi.org/10.12989/anr.2019.7.5.311
  100. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  101. Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2013, https://doi.org/10.12989/anr.2019.7.6.405
  102. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory vol.40, pp.12, 2013, https://doi.org/10.1007/s10483-019-2545-8
  103. Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings vol.8, pp.1, 2013, https://doi.org/10.12989/anr.2020.8.1.025
  104. Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions vol.8, pp.2, 2013, https://doi.org/10.12989/anr.2020.8.2.169
  105. On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2013, https://doi.org/10.1088/1402-4896/ab43b6
  106. Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings vol.100, pp.2, 2020, https://doi.org/10.1007/s11071-020-05565-y
  107. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2013, https://doi.org/10.12989/anr.2020.8.3.191
  108. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2013, https://doi.org/10.12989/anr.2020.8.4.283
  109. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2013, https://doi.org/10.12989/anr.2020.8.4.307
  110. Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
  111. Frequency, bending and buckling loads of nanobeams with different cross sections vol.9, pp.2, 2013, https://doi.org/10.12989/anr.2020.9.2.091
  112. Nonlinear buckling and free vibration of curved CNTs by doublet mechanics vol.26, pp.2, 2013, https://doi.org/10.12989/sss.2020.26.2.213
  113. Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes vol.36, pp.4, 2013, https://doi.org/10.1007/s00366-019-00790-5
  114. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2013, https://doi.org/10.12989/anr.2021.10.1.001
  115. Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading vol.78, pp.1, 2013, https://doi.org/10.12989/sem.2021.78.1.015
  116. Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083
  117. Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
  118. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  119. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2013, https://doi.org/10.12989/anr.2021.11.2.203