• 제목/요약/키워드: Thermal Field Variable

검색결과 73건 처리시간 0.021초

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

Advanced Field Weakening Control for Squirrel-Cage Induction Motor in Wide Range of DC-Link Voltage Conditions

  • Son, Yung-Deug;Jung, Jun-Hyung;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.665-673
    • /
    • 2017
  • This paper proposes a field weakening control method for operating an induction motor with a variable DC input voltage condition. In the variable DC voltage condition such as a battery, the field weakening method are required for the maximum output power. The conventional field weakening control methods can be used for operating the induction motor over the rated speed in a constant DC-link voltage condition. However, the conventional methods for operating the motor with the variable DC voltage is not suitable for the maximum output power. To overcome this problem, this paper proposes the optimized field weakening control method to extend the operating range of the induction motor with a rated power in a limited thermal and a wide DC input voltage conditions. The optimized d-axis and q-axis current equations are derived according to the field weakening region I and II to extend the operating region. The experimental results are presented to verify the effectiveness of the proposed method.

NON LINEAR VARIABLE VISCOSITY ON MHD MIXED CONVECTION HEAT TRANSFER ALONG HIEMENZ FLOW OVER A THERMALLY STRATIFIED POROUS WEDGE

  • Kandasamy, R.;Hashim, I.;Ruhaila, K.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.161-176
    • /
    • 2008
  • The effect of variable viscosity on MHD mixed convection Hiemenz flow over a thermally stratified porous wedge plate has been studied in the presence of suction or injection. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of thermal diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the magnetic effect, variable viscosity, thermal stratification and suction / injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Comparisons with previously published works are performed and excellent agreement between the results is obtained.

  • PDF

Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment

  • Arefi, Mohammad;Moghaddam, Sina Kiani
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.23-35
    • /
    • 2019
  • In this study we derive the governing equations of a functionally graded piezoelectric disk, subjected to thermo-electro-mechanical loads. First order shear deformation theory is used for description of displacement field. Principles of minimum potential energy is used to derive governing equations in terms of components of the displacement field and the electric potential. The governing equations are derived for a disk with variable thickness. The numerical results are presented in terms of important parameters of the problem such as profile of variable thickness, in-homogeneous index and other related parameters.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

CUPID 코드의 유체 물성치 변화를 고려한 자연대류 해석 (NATURAL CIRCULATION ANALYSIS CONSIDERING VARIABLE FLUID PROPERTIES WITH THE CUPID CODE)

  • 이승준;박익규;윤한영;김정우
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.14-20
    • /
    • 2015
  • Without electirc power to cool down the hot reactor core, passive systems utilizing natural circulation are becoming a big specialty of recent neculear systems after the severe accident in Fukusima. When we consider the natural circulation in a pool, thermal mixing phenomena may start from single phase circulation and can continue to two phase condition. Since the CUPID code, which has been developed for two-phase flow analysis, can deal with the phase transition phenomena, the CUPID would be pertinent to natural convection problems in single- and two-phase conditions. Thus, the CUPID should be validated against single- and two-phase natural circulation phenomena. For the first step of the validation process, this study is focused on the validation of single-phase natural circulation. Moreover, the CUPID code solves the fluid properties by the relationship to pressure and temperature from the steam table considering non-condensable gas effects, so that the effects from variable properties are included. Simple square thermal cavity problems are tested for laminar and turbulent conditions against numerical and experimental data. Throughout the investigation, it is found that the variable properties can affect the flow field in laminar condition, but the effect becomes weak in turbulence condition, and the CUPID code implementing steam table is capable of analyzing single phase natural circualtion phenomena.

Power Absorption Measurements during NMR Experiments

  • Felix-Gonzalez, N.;Urbano-Bojorge, A.L.;de Pablo, C. Sanchez-L;Ferro-Llanos, V.;del Pozo-Guerrero, F.;Serrano-Olmedo, J.J.
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.155-160
    • /
    • 2014
  • The heating produced by the absorption of radiofrequency (RF) has been considered a secondary undesirable effect during MRI procedures. In this work, we have measured the power absorbed by distilled water, glycerol and egg-albumin during NMR and non-NMR experiments. The samples are dielectric and examples of different biological materials. The samples were irradiated using the same RF pulse sequence, whilst the magnetic field strength was the variable to be changed in the experiments. The measurements show a smooth increase of the thermal power as the magnetic field grows due to the magnetoresistive effect in the copper antenna, a coil around the probe, which is directly heating the sample. However, in the cases when the magnetic field was the adequate for the NMR to take place, some anomalies in the expected thermal powers were observed: the thermal power was higher in the cases of water and glycerol, and lower in the case of albumin. An ANOVA test demonstrated that the observed differences between the measured power and the expected power are significant.

로지스틱 회귀분석을 활용한 옥외공간에서의 온열쾌적감에 대한 피험자 설문 분석 (Thermal Comfort in Outdoor Environment by Questionnaire Survey : Using the Logistic Regresstion)

  • 임종연;황효근;류민경;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.97-101
    • /
    • 2009
  • Calculating and predicting the thermal comfort in outdoor environment are difficult than in indoor environment because composition parameters are variable, interrelations among parameters are very complex and human activities in outdoor are diverse. Moreover, the thermal expectancy of subject in outdoor environment is different from that of indoor environment. The aims of this study are to examine the difference between indoor and outdoor thermal comfort range. With this in mind, field measurement for estimating outdoor thermal environment and a questionnaire survey with simultaneous measurement around the subject were conducted.

  • PDF

적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발 (Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera)

  • 최우용;김종범;오성권;김영일
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

비선형 열탄성 연성 구조물에 대한 위상 최적설계 (Topology Design Optimization of Nonlinear Thermoelasticity Problems)

  • 문세준;하윤도;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.347-354
    • /
    • 2004
  • Using an efficient adjoint variable method, we develop a unified design sensitivity analysis (DSA) method considering both steady state nonlinear heat conduction and geometrical nonlinear elasticity problems. Design sensitivity expressions with respect to thermal conductivity and Young's modulus are derived. Beside the temperature and displacement adjoint equations, another coupled one is defined regarding the obtained adjoint displacement field as the adjoint load in temperature field. The developed DSA method is shown to be very efficient and further extended to a topology design optimization method for the nonlinear weakly coupled thermo-elasticity problems using a density approach.

  • PDF