• Title/Summary/Keyword: Thermal Expansion Chamber

Search Result 54, Processing Time 0.029 seconds

Pressure Rise in the Thermal Expansion Chamber With Arc (유부하시의 열팽창분사식 소호부내의 상승압력)

  • Park, K.Y.;Song, K.D.;Shin, Y.J.;Chang, K.C.;Kim, K.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1344-1346
    • /
    • 1995
  • The interrupting capability of gas circuit breakers(GCB) are critically dependent on the pressure rise of the puffer cylinder or the thermal expansion chamber at current zero. Therefore it's very useful for the designers to know the pressure rise there at the design stage. Much effort has been done to predict the pressure rise in the puffer cylinder or the thermal expansion chamber in no-load condition. Thus, we now calculate it with reasonable accuracy with the simple programs coded by ourselves or with the commercial CFD packages. However, it has been still difficult problem to calculate it under the existence of arc. In this paper, we propose a method which can be used to predict the pressure rise in the thermal expansion chamber of thermal expansion type GCB. The method has been applied to the 25.8kV 25kA thermal expansion type model GCB and the calculated results have been compared with those from experiment.

  • PDF

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle(II) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구(II) - 팽창실 용적이 차단성능에 미치는 영향 -)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.80-82
    • /
    • 1996
  • This paper deals with the effects of the volume of thermal expansion chamber on the interrupting performance in thermal expansion type 25.8kV 25kA gas circuit breaker. Model interrupters with 5 type thermal expansion chamber were designed and manufactured. Short-circuit tests were carried out for those model interrupters with 25kA breaking current. Pressure rise in the expansion chamber were measured and compared with the calculated one which was obtained from a self-developed program in our team. The analysis on the interrupting performance of each model interrupter has been done on the base of the short-circuit test results.

  • PDF

Comparison of Thermal Recovery Characteristics of Hybrid Type Model Gas Interrupters According to the Arrangement of Thermal Expansion Chamber and Puffer Cylinder (팽창실과 파퍼 실린더의 배열형태에 따른 복합소호 모델 가스차단부의 열적회복특성 비교)

  • Song Ki-Dong;Chong Jin-Kyo;Park Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.725-731
    • /
    • 2004
  • In this study, the three type hybrid interrupters according to the arrangement of the thermal expansion chamber and the puffer cylinder(they are called 'serial type', 'parallel/exchanged type', and 'parallel/separated type' respectively in this work) were designed and manufactured. This paper presents the tested results of the thermal recovery characteristics on the interrupters using a simplified synthetic test facility. The 'serial type' hybrid interrupter which is to obtain more easily the pressure rise for the thermal recovery compared with the others has the best capability in the thermal recovery characteristics. In order to investigate the stress on the operating mechanism, the distortion of the stroke wave in on-load test was examined to the stroke curve in no-load test. The biggest distortion was occurred in the 'parallel/exchanged type' hybrid interrupter. Finally, the small interruption capability on the three type interrupters was estimated by a theoretical form and the 'parallel/separated type' hybrid interrupter has the advantage of the others in the view of structure.

Calculation of Pressure Rise in a Thermal-expansion Type Arc Chamber (열팽창 분사식 가스차단부의 소호실내 압력상승 계산)

  • Choi, Y.K.;Oh, Y.H.;Shin, Y.J.;Park, K.Y.;Kim, H.J.;Choulkov, V.V.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.167-169
    • /
    • 1998
  • Recently $SF_6$ gas circuit breakers utilizing the thermal-expansion principle are increasingly used in distribution power system. Active researches and developments have been conducted to reduce the size and weight, and to improve the interrupting performance of the circuit breakers. It was first developed a programme which could show the hot gas flowing into the thermal-expansion arc chamber. This programme, using so-called FLIC method basically, adopted 'Simplified Enthalpy Arc Model' which was somewhat modified to estimate the arc quenching process. The computation by it was compared with the measured results of the pressure rise in the chamber, and both showed fairly good agreement.

  • PDF

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

Development of Medium Voltage $SF_6$ Interrupter for RMU ($SF_6$ 가스를 이용한 배전급 RMU용 소호부 개발)

  • Lee, B.W.;Sohn, J.M.;Seo, J.M.;Choe, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.301-304
    • /
    • 2001
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device defends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

Investigation on $SF_6$ Hybrid Interrupter using Thermal Expansion and Arc Rotation Principle (자력팽창 및 아크 회전에 의한 배전급 $SF_6$ 복합소호부 개발 연구)

  • Lee, B.W.;Sohn, J.M.;Kang, J.S.;Choe, W.J.;Kim, Y.K.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.919-921
    • /
    • 2000
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle (I) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구 (I))

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Chang, K.C.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.160-164
    • /
    • 1995
  • In order to develop a medium voltage class gas circuit breaker by our own technology, we designed and manufactured the model interrupters using the hybrid arc extinguishing principle which adopts the thermal expansion principle in the large current region and the arc rotation principle by permanent magnet in the small current region. As the results of the first year research out of three years' research period, the main design parameters such as the volume of thermal expansion chamber, the distance between fixed contact and nozzle, the length of nozzle throat, the nozzle expansion angle and the magnitude of permanent magnet etc. have been determined. 4 types of model interrupters have been designed and manufactured considering the main design parameters. The 25kA short-circuit test and capacitive current breaking test have been performed for the model interrupters and the test results analyzed to improve the model interupters.

  • PDF