• Title/Summary/Keyword: Thermal Emission

Search Result 1,367, Processing Time 0.035 seconds

Synthesis and Characterization of Upconversion Nanoparticles for Cancer Therapy

  • Choe, Seung-Yu;Kim, Bo-Bae;Kim, Eun-Bi;Lee, Seung-U;Jeon, Seon-A;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.2-420.2
    • /
    • 2016
  • Various fields have been paid attention to upconversion nanoparticles (UCNPs) because of its unique optical properties. Moreover, to use the UC luminescent techniques through cell images for identified apoptosis/necrosis of cancer cells have been performed. They have been studied for a versatile biomedical application such as a biosensing tool, or delivery of active forms of medicines inside living cells. UCNPs have distinctive characteristics such as photoluminescence, special emission, low background fluorescence signal and good colloidal stability, which have many advantages compared with the organic dyes and quantum dots. UCNPs have not only a great potential for imaging (UC luminescence) but also therapies (photo-thermal therapy, PTT and photo-dynamic therapy, PDT) in cancer diagnostics. Therefore, we report the enhancement of upconversion red emission in NaYF4:Yb3+,Er3+ nanoparticles, synthesized via solid-state method with the thermal decomposition of trifluoroacetate as precursors and organic solvent at a high boiling point. The UCNPs have an emission in the field of near infrared wavelength, cubic shape and nano-size in length. In this study, we will further investigate it for cancer therapy with NIR optical detection onto the solid substrate.

  • PDF

Application of Carbon Nanotubes in Displays

  • Feng, T.;Sun, Z.;Zhang, Z.J.;Lin, L.F.;Ding, Hui.;Chen, Y.W.;Pan, L.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1529-1531
    • /
    • 2008
  • Since the discovery over a decade ago, carbon nanotubes (CNTs) have been attracting considerable attentions both from scientists and engineers. Because of the excellent field emission properties, such as high aspect ratio, extremely small diameter, and high emission current, CNTs become a potential candidate as field emitter for field emission display (FED) and lighting (FEL) as backlight for LCD. Due to the exceptional physical properties, such as superior thermal and electrical conductivities, as well as high stiffness and strength, the CNT-based composites can be as light-weight heat-sink or thermal spreader materials used for power electronic devices, such as power LED for general illumination. The CNTs for above applications will be reviewed, and related materials and devices will be demonstrated in this paper.

  • PDF

Effect of pressure and stochiometric air ratio on flame structure and NOx emission in gas turbine dump combustor with double cone burner (이중원추형 모형연소기에서 압력과 공기비에 따른 화염 구조 및 NOx 배출특성)

  • Nam, Hyun Su;Han, Dong Sik;Kim, Gyu Bo;Jeo, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.177-179
    • /
    • 2012
  • This work presents an experimental investigation to study $NO_x$ emissions under stoichiometric air ratio and elevated pressure (2~10bar) in a High Press Combustor(HPC) equiped with double cone burner which was designed by Pusan Clean Coal Center(PC3). Exaust gas temperature and $NO_x$ emissions were measured at the end of the combustion chamber. The $OH^*$ radical concentration and $NO_x$ emission were decreased as a function of increasing ${\lambda}$ generally. On the other hand, $OH^*$ radical concentration and $NO_x$ emission increased with ${\lambda}$ pressure of the combustion chamber. $NO_x$ emissions which were governed by thermal $NO_x$, were highly increased under the elevated pressure, but slightly increased at sufficiently low fuel concentrations (${\lambda}>2.0$).

  • PDF

Emission Characteristics of Diesel Oxidation Catalysts for a Commercial Diesel Engine (상용 디젤엔진용 산화촉매의 배출가스 저감 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.;Jung, M.K.;Kwon, G.M.;Shin, B.S.;Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • Recently, as people pay attention to the environmental pollution, the emission of diesel engine has become a serious problem. Diesel Oxidation Catalysts(DOC) were experimentally investigated for the purification of pollutants exhaust emission from the diesel engine. In this study, the conversion efficiency of exhaust gas was investigated with various washcoat materials of the DOC. It was formed that CO conversion efficiency depended on temperature, but THC conversion was dominated by temperature and space velocity. Conversion efficiency of THC and CO increased with the addition of ZSM-5 in the washcoat, whereas these conversion efficiency decreased by adding Nd and Ba additives. $V_2O_5$ additive had the thermal stability for high temperature. Thermal durability of the catalyst was improved as increase of $V_2O_5$ additive.

  • PDF

A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season (겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구)

  • Chang, Hyun-Jae;Cho, Keun-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.

Performance Characteristics of CNG Engine at Various Compression Ratios (압축비 변경에 따른 CNG기관의 특성 연구)

  • Kim Jin-young;Ha Jong-yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2005
  • Natural gas is one of clean fuels that can replace petroleum-based fuels, because it has low exhaust emission, comparatively high thermal efficiency and abundant deposits. In this addition, owing to high octane number and wide lean flammability limit, it has a strong point to increase the compression ratio. For this reason, the research is being actively executed to increase the generating power and thermal efficiency of the engine by raising the compression ratio through utilization of high octane number relevant to development of CNG engine. In this study, 0.63L single cylinder diesel engine has been used to alter easily compression ratio. Compression ratio has gotten under control by modifying the thickness of gasket between cylinder head and block without major structural modifications. As the result, as compression ratio has increased, generating power and fuel consumption ratio have been improved. As for emission concentration, as compression ratio has increased, THC concentration has been decreased while exhause concentration of NOx increased. In case compression ratio has excessively increased, brake output decrease and cycle variation have been increased. As the result acquired by analyzing brake output, fuel consumption ratio, cycle variation and exhaust, the engine driving condition has acquired $\varepsilon=13$ as the optimal compression ratio in this study.

Results of KVN and ALMA observations toward WX Psc

  • Yun, Youngjoo;Cho, Se-Hyung;Yoon, Dong-Hwan;Yang, Haneul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2019
  • We present the results of KVN and ALMA observations toward WX Psc (IRC+10011) which is a long-period variable OH/IR star. The SiO masers of v=1 and v=2, J=5-4, and the SiO thermal emission of v=0, J=5-4 were observed together with H2O v2=1 (232.6 GHz) and continuum emission at ALMA Band 6 in October 2017 (Cycle 5). This observation aims to investigate the physical association between the inner and outer parts of the circumstellar envelope (CSE) swept by the stellar winds, which is very crucial to understand the asymmetric outward motions developed during the evolutionary phases from the asymptotic giant branch (AGB) stars to the planetary nebulae (PNe). The strong SiO maser features and thermal emissions are detected together with the continuum emission in ALMA observation, which imply the elongated morphology of the CSE of WX Psc. While the spatial resolution of about 20 mas in ALMA observation cannot clearly resolve the detailed characteristics of the inner part of the CSE, the Korean VLBI Network (KVN) observations show the spatial distributions of the v=1 J=1-0, J=2-1, J=3-2 SiO masers emitted from the inner regions of CSE, which are the complementary to the ALMA results. Therefore, we expect these results reveal how the bipolar features of the 22 GHz H2O maser are connected to the innermost region of CSE through the dust condensation region, which is closely related to the enormous mass ejection of the evolved stars.

  • PDF

Emission Stability of Semiconductor Nanowires (반도체 나노와이어에서 전자방출 안정성)

  • Yu, Se-Gi;Jeong, Tae-Won;Lee, Sang-Hyun;Heo, Jung-Na;Lee, Jeong-Hee;Lee, Cheol-Jin;Kim, Jin-Young;Lee, Hyung-Sook;Kuk, Yoon-Pil;Kim, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.499-505
    • /
    • 2006
  • Field emission of GaN and GaP nanowires, synthesized by thermal chemical vapor deposition, and their emission stabilities under oxygen and argon environments were investigated. The field emission current of GaN nanowires was seriously deteriorated under oxygen environment, while that of GaP was not. Both wires did not show any noticeable change under argon environment. The existence of oxide outer shell layers in the GaP nanowires was proposed to be a main reason for this emission stability behavior. Field emission energy distributions of electrons from these nanowires revealed that field emission mechanism of the semiconductor nanowires were different from that of carbon nanotubes.

Recent Trend to the Forging Technology of Power Plant Components and Status of Forging Company (발전용 소재 단조기술 및 국내 단조업계 동향)

  • Kim, J.T.;Chang, H.S.;Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.38-41
    • /
    • 2007
  • The increase of $CO_2$ emission by increasing of fossil fuel usage has been understood a major cause of global warming. The supply of electric energy is heavily dependent on the massive thermal power and nuclear power plant before developing the renewable energy to supply the electric energy stably at a low price. The large and sound forged components of pressure vessel, turbine and generator are widely used in power plant such as wind power, hydroelectric power generation, nuclear power and thermal power plant. This paper is discussed the trend of manufacturing technology for pressure vessel and turbine to satisfy the required condition of utility company. It is also introduced a strategy of forging industry to cope with carbon tax.

  • PDF

An Experimental Study on Performance Characteristics of a Hydrogen Fuelled Spark Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.81-89
    • /
    • 2014
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.76 to 1.5, and the ignition timing was controlled to be at minimum spark advance for best torque (MBT).