• Title/Summary/Keyword: Thermal Degradation

Search Result 1,117, Processing Time 0.041 seconds

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Degradation Mechanism of ZnO Ceramic Varistors with the Time on the DC Stress Test (DC 스트레스 시간에 따른 ZnO 세라믹 바리스터의 열화기구)

  • 소순진;김영진;소병문;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.857-860
    • /
    • 2000
  • The objective of this paper is to demonstrate degradation phenomena through DC degradation tests and predicts degradation phenomena as a function of time from the tests. The ZnO varistor used in this investigation were fabricated by standard ceramic techniques. Especial, these were sintered in nitrogen atmosphere, at 2 h, for $1300^{\circ}C$. The conditions of DC degradation test were 115$\pm$$2^{\circ}C$for 0, 2, 4, and 8 h, respectively. To demonstrate the degradation phenomena of ZnO varistors, Voltagecurrent analyses were performed before and after the degradation test, and frequency analyses were used with the time of the degradation tests. It was found that the degradation occurred in not grain but grain boundary and the degradation behavior of varistors was unsymmetrically degraded with the direction of tests.

  • PDF

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Studies on Polyacrylonitrile (3) Irradiation of Polyacrylonitrile (폴리아크릴로니트릴에 關한 硏究 (第 3 報) 폴리아크릴로니트릴에 對한 放射線照射에 關하여)

  • ICK SAM NOH
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.77-80
    • /
    • 1967
  • Radiolysis of polyacrylonitrile(PAN) has been studied. Parameters for crosslinking and scission induced by gamma-ray irradiation were obtained by means of sol-gel partitioning method. G-value of crosslinking in PAN ($\bar{M}n=6{\times}10^5$) was 0.038 and the gel dose 21.6 Mrad. The effects of irradiation on the thermal degradation rate in PAN was also studied. No appreciable changes in thermal degradation rate observed up to 81.8 Mrad of irradiation dose.

  • PDF

A Study on Electrical Fire of Small Ventilators due to Aged Degradation (경년열화에 의한 소형 환풍기의 전기화재에 관한 연구)

  • Lim, Jong Yong;Lee, Sung Ill
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.22-26
    • /
    • 2016
  • "Always-on" small ventilators are likely to experience thermal decomposition of insulating material due to thermal, electrical, mechanical and environmental influences, and lose insulating properties by the process of oxidation and physiochemical reaction. This increases the risk of electrical fire because of layer short, short circuit, overload and Plastics are usually used to make ventilator and ventilator enclosures since they make less noise and are cheaper. Although more preferred than iron, plastic, a combustible material, has a higher risk of fire. In this study, several experiments were carried out to find out how RCD(Residual Current Protective Device) and Thermal fuses, which are electric motor protection devices, work and what needs to be done to reduce the risk of fire.

Evaluation of Thermal Property and Fluidity with Underfill for BGA Package (BGA 패키지를 위한 언더필의 열적 특성과 유동성에 관한 연구)

  • Noh, Bo-In;Lee, Bo-Young;Kim, Soo-Jung;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, the curing kinetics and thermal degradation of underfill were investigated using differential scanning calorimetry (DSC) and thermo gravimetry analysis (TGA). The mechanical and thermal properties of underfill were characterized using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). Also, we presented on underfill dispensing process using Prostar tool. The non-isothermal DSC scans at various heating rates, the exothermic reaction peak became narrower with increasing the heating rate. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The results of fluidity phenomena were simulated using Star CD program, the fluidity of the underfills with lower viscosity was faster.

Temperature Distribution Monitoring of Transformer Using IRR-Camera (적외선방사카메라를 이용한 변압기 온도분포 모니터링)

  • 이우선;정찬문;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.459-462
    • /
    • 2002
  • The conventional thermal insulator and power transformer testing is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also thermal testing is able to offer the standard judgement of relative degradation level of outside HV machine. There it is very useful method compare to previous conventional thermal testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, thermal testing of Power transformer is measured with partial temperature distribution in real time.

  • PDF

Epoxidized Polybutadiene as a Thermal Stabilizer for Poly(3-hydroxybutyrate). 1. Effect of Epoxidation on the Thermal Properties of Polybutadiene

  • Park, Ju-Yol;Lee, Jong-Keun;Park, Won-Ho
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.109-112
    • /
    • 2002
  • Polybutadiene(PB) was epoxidized to various extents with m-chloroperbenzoic acid (MCPBA) in homogeneous solution. The thermal properties of the epoxidized PBs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). As a result of epoxidation the glass transition temperature (Tg) of PB increased by approximately $0.8^{\circ}$ for each 1 mol% of epoxidation. The thermal decomposition of the epoxidised PBs occurred in two-step process, while that of PB exhibited apparent one-step degradation process.