• Title/Summary/Keyword: Thermal Degradation

Search Result 1,116, Processing Time 0.026 seconds

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

Effect of Reaction Temperature Program on Thermal Degradation of Low-quality Pyrolytic Oil for Bench-scale Continuous Reaction System (벤치 규모 연속반응시스템에서 저급 열분해유 분해반응에 대한 반응온도 프로그램의 영향)

  • Lee, Kyong-Hwan;Nam, Ki-Yun
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.186-193
    • /
    • 2009
  • The characteristics of product materials obtained from thermal degradation of low-qualify pyrolytic oil were investigated in this study. The reactants were produced by pyrolysis of mixed plastic waste with film type in a commercial rotary kiln reaction system. The properties of reactants were measured by elemental analysis, calorimetry analysis and SIMDIST analyst. The result of degradation experiments with different reaction temperature programs was discussed through product yields, cumulative yields and production rates of oil products. The multi-step reaction temperature program resulted in higher yields of product oils and lower yields of residues than one-step reaction temperature program. The product characteristics such as production yield and the rate of oil products etc. were influenced by reaction temperature program in the continuous thermal degradation.

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

A Composite Camera Calibration Technique for Thermal Deterioration Diagnosis of Power Distribution Line (배전 선로의 열화 진단을 위한 복합 카메라 보정기법)

  • Jung, Ha-Hyoung;Park, Jin-ha;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • This paper presents a composite camera calibration method to determine thermal degradation of power distribution equipment by combining an infrared (IR) camera and a color camera. A calibration jig was first constructed to match the properties of the two cameras. Our calibration and visualization techniques allow for the display of two images, one from the color camera and the other from the IR camera with different field of views (FOVs), on the screen at the same time. To confirm its validity, several case studies have been developed to analyze thermal deterioration limits of indoor and outdoor power distribution facilities.

An Evaluation on High Temperature Oxidation Resistance of EB-PVD Thermal Barrier Coatings (전자빔 증착법에 의한 열차폐코팅의 고온 내산화성 평가)

  • Kim, Jong-H.;Jeong, Se-I.;Lee, Ku-H.;Lee, Eui-Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • Failure mechanisms of electron beam physical vapor deposited thermal barrier coatings(EB-PVD TBCs) that occur during thermal cyclic oxidation were investigated. The investigations include microstructural degradation of NiCrAIY bond coat, thermally grown oxides(TGOs) along the ceramic top coat-substrate interface and fracture path within TBCs. The microstructural degradation of the bond coat during cyclic oxidation created Al depleted zones, resulting in reduction of NiAl and ${\gamma}$-Ni solid solution phase. It was observed that the fracture took placed primarily within the TGOs or at the interfaces between TGOs and bond coat.

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

Comparison of Degradation Behaviors for Titanium-based Hard Coatings by Pulsed Laser Thermal Shock

  • Jeon, Seol;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.523-527
    • /
    • 2013
  • Ti-based coatings following laser ablation were studied to compare degradation behaviors by thermomechanical stress. TiN, TiCN, and TiAlN coatings were degraded by a Nd:YAG pulsed laser with an increase in the laser pulses. A decrease in the hardness was identified as the pulses increased, and the hardness levels were in the order of TiAlN > TiCN > TiN. The TiN showed cracks on the surface, and cracks with pores formed along the cracks were observed in the TiCN. The dominant degradation behavior of the TiAlN was surface pore formation. EDS results revealed that diffusion of substrate atoms to the coating surface occurred in the TiN. Delamination occurred in the TiN and TiCN, while the TiAlN which has higher thermal stability than the TiN and TiCN maintained adhesion to the substrate. It was considered that the decrease in the hardness of the Ti-based hard coatings is attributed to surface cracking and the diffusion of substrate atoms.