• Title/Summary/Keyword: Thermal Deflection

Search Result 177, Processing Time 0.03 seconds

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

An Experimental Study on the Dimensional Error in Ball End Milling (볼 엔드밀 가공에서 치수오차에 관한 실험적 연구)

  • 심기중;유종선;정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Deflection of a Thin Solid Structure by a Thermal Bubble (열 기포에 의한 고체 박막의 변형 해석)

  • Kim, Ho-Young;Lee, Yoon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

Performance of Sealing Integrity and Banding strain of HV Polymeric bushing with Thermal Mechanical Test (열-기계적 시험에 따른 초고압 폴리머 부싱의 굽힘변형 및 기밀성능에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung;Lee, Chul-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1441_1441
    • /
    • 2009
  • This paper describes performance of sealing integrity and bending strain of HV polymeric bushing with thermal mechanical test. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As a results, multi winding bushing shows that it has max deflection in the range of 16.5~16.9 mm.

  • PDF

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

A Study of Influence on the Thermal deflection of the Feed system in the Bearing Arrangement method (베어링 조합방법이 이송축 열변위에 주는 영향에 관한 연구)

  • 홍성오;김선진;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.46-52
    • /
    • 2001
  • One of the important technical issues is how to decrease thermal expansion of ballscrew in proportion to the increase of machining speed. when measuring force of stretch of ballscrew, since not only actual expansion and the value of bending have to be considered, it's impossible to definite the exact value of expansion. In addition, support bearings of ballscrew gain considerable force in axial direction. It also generates thermal expansion on the ballscrew, and deteriorates the bearings. In conclusion, it's impossible to give the pretension enough to absorb the all elongation due to thermal expansion generated during machine running. If gave, bed, column and saddle are all bent to change machine accuracy, and the support bearings of ballscrew are damaged. The purpose of this paper is to study the pretension of support bearing of ballscrew in machine tool.

  • PDF

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Load-Carrying Capacity Evaluation of the Composite Beam Strengthened by Multi-Stepwise Thermal Prestressing Method Using Cover-Plate (커버플레이트를 이용한 다단계 온도프리스트레싱으로 보강된 합성보의 하중-저항성능 분석)

  • Ahn, Jin-Hee;Jung, Chi-young;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.159-169
    • /
    • 2009
  • In this study, static loading tests and numerical analyses of the composite beam strengthened by multi-stepwise thermal prestressing method were carried out to evaluate the prestressing effect of the thermal prestressing prestress and the sectional effect of the installed cover-plate on the increase in the load-carrying capacity of composit beam. From this study, the strengthening method using multi-stepwise thermal prestressing method (TPSM) can be applied to reduce the deflection of the composite beam as well as to strengthening the composite beam by inducing the prestress in case of the occurrence in the large deflection by the insufficiency of the section properties of the composite beam. because of the expectation of the increase in the yield load and the sectional properties of the composite beam.

Influence of Combustion Flame on Flashover Characteristics Due to Fire Occurrence (화재발생시 직류 플래시오버특성에 미치는 연소화염의 영향)

  • 하장호;김인식;정우영
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • In this paper, characteristics of the DC flashover voltage in the horizontal air gap of sphere-sphere/needle-needle electrode system were investigated when the combustion flame of paraffin oil was present between the two electrodes. The reduction characteristic of DC flashover voltage was discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the corona wind and Coulomb's force. As the results of an experimental investigation, It was found that the reduction characteristics of DC flashover voltages with flames were affected strongly by the flame deflection and the change of relative air density. It was also found that the thermal ionization phenomena were not important in the range of combustion flame temperature.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.