• Title/Summary/Keyword: Thermal Cycle test

Search Result 251, Processing Time 0.056 seconds

Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성)

  • Park, T.W.;Shim, I.O.;Kim, Y.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Performance Test of Cooling System for the KEPCO HTS Power Cable (한전 초전도전력케이블 냉각시스템 성능시험)

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Lee, B.S.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2206-2210
    • /
    • 2007
  • As a power transmission line supplying power to a densely populated city, the high temperature superconducting (HTS) cable is expected to one of the most effective cables with a compact size because of its high current density. The verification of HTS power cable system have been progressed by KEPRI. A cooling system for a 3-phase 100m HTS power cable with 22.9kV/1.25kA was installed and tested at KEPCO's Gochang power testing center in Korea. The system consists of a liquid nitrogen decompression cooling system with a cooling capacity of 3kW and a closed circulation system of subcooled liquid nitrogen. Several performance tests of the cable system with respect to the cooling such as cooling capacity, heat load and temperature stability, were performed at several temperatures. Thermal cycle test, cool-down to liquid nitrogen temperature and warm-up to room temperature, was also performed to investigate thermal cycle influences. The outline of the installed cooling system and performance test results are presented in this paper.

  • PDF

Experimental Evaluation of the Thermal Integrity of a Large Capacity Pressurized Heavy Water Reactor Transport Cask

  • Bang, Kyoung-Sik;Yang, Yun-Young;Choi, Woo-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.357-364
    • /
    • 2022
  • The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62℃, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446℃ lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.

Study on the Failure Mechanism of a Chip Resistor Solder Joint During Thermal Cycling for Prognostics and Health Monitoring (고장예지를 위한 온도사이클시험에서 칩저항 실장솔더의 고장메커니즘 연구)

  • Han, Chang-Woon;Park, Noh-Chang;Hong, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.799-804
    • /
    • 2011
  • A thermal cycling test was conducted on a chip resistor solder joint with real-time failure monitoring. In order to study the failure mechanism of the chip resistor solder joint during the test, the resistance between both ends of the resistor was monitored until the occurrence of failure. It was observed that the monitored resistance first fluctuated linearly according to the temperature change. The initial variation in the resistance occurred at the time during the cycle when there was a decrease in temperature. A more significant change in the resistance followed after a certain number of cycles, during the time when there was an increase in the temperature. In order to explain the failure patterns of the solder joint, a mechanism for the solder failure was suggested, and its validity was proved through FE simulations. Based on the explained failure mechanism, it was shown that prognostics for the solder failure can be implemented by monitoring the resistance change in a thermal cycle condition.

메탄올-물 혼합연료 기관에 관한 연구

  • 김응서;정진은
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.49-57
    • /
    • 1981
  • A cycle simulation of 4 cycle spark ignition engine using methanol-water blend as a fuel has been developed for study of prediction of power, specific fuel consumption, mean effective pressure and thermal efficiency. One-dimensional flow model for intake process and thermodynamic model for combustion process were selected. After, performance test was made with conventional engine which was modified in consideration of fuel properties. And computational results by simulation have been compared with experimental results. As the agreement between computational and experimental results was good, prediction of engine performance by was possible.

  • PDF

Analysis of the thermal behaviors of the cylinder block of a small gasoline engine (소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 김병탁;박진무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

Thermal Design and Analysis for Two-Axis Gimbal-Type X-Band Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 X-밴드 안테나의 열설계 및 궤도 열해석)

  • Chae, Bong-Geon;You, Chang-Mok;Chang, Su-Young;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna for CAS(Compact Advanced Satellite) transmits large amount of image data to ground station regardless of satellite attitude and orbital motion. This antenna mounted on the external surface of the satellite is directly exposed to the extreme space with thermal environment during the orbital operation. Therefore, a proper thermal design is needed to maintain the antenna itself as well as other main components within allowable temperature range. In this study, the thermal design effectiveness of two-axis gimbal X-band antenna was verified through the thermal analysis. In addition, required power and duty cycle of heater were estimated through the thermal analysis under conditions of system level thermal vacuum test and on-orbit thermal environment. The thermal analysis results indicated that all the main components of X-band antenna satisfy the allowable temperature requirement.

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.