• 제목/요약/키워드: Thermal Creep

검색결과 258건 처리시간 0.027초

복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (II) - 탄-소성-크리프 - (Estimation of C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (II) - Elastic-Plastic-Creep -)

  • 송태광;김윤재
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1065-1073
    • /
    • 2009
  • In this paper, the estimation method of C(t)-integral for combined mechanical and thermal loads is proposed for elastic-plastic-creep material via 3-dimensional FE analyses. Plasticity induced by initial loading makes relaxation rate different from those produced elastically. Moreover, the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. To quantify C(t)-integral for combined mechanical and thermal loads, the simplified formula are developed by modifying redistribution time in existing work done by Ainsworth et al..

복합응력이 작용하는 균열 배관에 대한 천이 크리프 조건에서의 C(t)-적분 예측 (I) - 탄성-크리프 - (Estimations of the C(t)-Integral in Transient Creep Condition for Pipe with Crack Under Combined Mechanical and Thermal Stress (I) - Elastic-Creep -)

  • 송태광;김윤재
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.949-956
    • /
    • 2009
  • The C(t)-integral describes amplitude of stress and strain rate field near a tip of stationary crack under transient creep condition. Thus the C(t)-integral is a key parameter for the high-temperature crack assessment. Estimation formulae for C(t)-integral of the cracked component operating under mechanical load alone have been provided for decades. However, high temperature structures usually work under combined mechanical and thermal load. And no investigation has provided quantitative estimates for the C(t)-integral under combined mechanical and thermal load. In this study, 3-dimensional finite element analyses were conducted to calculate the C(t)-integral of elastic-creep material under combined mechanical and thermal load. As a result, redistribution time for the crack under combined mechanical and thermal load is re-defined through FE analyses to quantify the C(t)-integral. Estimates of C(t)-integral using this proposed redistribution time agree well with FE analyses results.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

Investigation of the Contributions of Creep and Thermal Fatigue to Failure of a High-Intermediate Pressure Steam Turbine Casing

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2020
  • The contribution of damage mechanisms to failure of steam turbine casing made of Cr-Mo-V steel was investigated. Creep-fatigue interaction on the HP side corner of turbine casing was revealed as the root cause of the catastrophic failure performed by metallurgical analysis. The steady-state pressure and transient thermal stress were analyzed based on the actual operating condition of the thermal plant. Damage of creep-fatigue interaction to crack initiation was evaluated with multiaxial effects. The contribution ratio of creep and fatigue to the crack initiation was estimated to 3:1. Temporary geometrical correct action with repair weld was executed. For long-term operation, design improvement of casing equipment for creep resistance should be needed.

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

Modeling of combined thermal and mechanical action in roller compacted concrete dam by three-dimensional finite element method

  • Abdulrazeg, A.A.;Noorzaei, J.;Mohammed, T.A.;Jaafar, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.1-25
    • /
    • 2013
  • A combined thermal and mechanical action in roller compacted concrete (RCC) dam analysis is carried out using a three-dimensional finite element method. In this work a numerical procedure for the simulation of construction process and service life of RCC dams is presented. It takes into account the more relevant features of the behavior of concrete such as hydration, ageing and creep. A viscoelastic model, including ageing effects and thermal dependent properties is adopted for the concrete. The different isothermal temperature influence on creep and elastic modulus is taken into account by the maturity concept, and the influence of the change of temperature on creep is considered by introducing a transient thermal creep term. Crack index is used to assess the risk of occurrence of crack either at short or long term. This study demonstrates that, the increase of the elastic modulus has been accelerated due to the high temperature of hydration at the initial stage, and consequently stresses are increased.

Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석 (Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

STS 316의 시효 열화 처리와 크리프 거동 특성 (Thermal Aging and Creep Rupture Behavior of STS 316)

  • 임병수
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF

화력발전소용 0.5Cr 0.5Mo 0.25V 강 곡관배관의 크리프 손상평가 (Assessment of Creep Damage on a High Temperature Pipe Bend of 0.5Cr0.5Mo0.25V Ferritic Steel for Thermal Power Plant)

  • 현중섭;허재실;김봉수
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.127-134
    • /
    • 2010
  • Components in thermal power plants are subjected to service conditions under which creep damages take place causing material exhaustion. Comprehensive creep damage investigations have been performed on a 0.5Cr0.5Mo0.25V pipe bend which had been taken out of service after 117,603h and 501 start-ups because of severe cracks. The propagation of creep damage in a long term exposed pipe bend has been analysed by the replication, Indentation and hardness tests. Also, Calculation of creep lifetime has been investigated in order to verify actual lifetime of a damaged pipe bend. By measuring diametrical expansion, Accumulated creep strain and creep strain rate were calculated. Calculated results of creep lifetime on the Larson-Miller Parameter method are good agreement with actual service-exposed hour.

열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가 (Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions)

  • 오창영;송태광;김윤재
    • 대한기계학회논문집A
    • /
    • 제35권6호
    • /
    • pp.609-617
    • /
    • 2011
  • 최근 효율을 높이기 위한 플랜드의 환경이 고온, 고압으로 변화함에 따라 열하중과 기계하중을 동시에 반영한 균열 평가는 플랜트의 건전성을 위하여 반드시 필요하다. C(t)-적분은 고온 균열 평가에 있어서 천이 크리프 상태의 균열을 평가하는 중요한 요소이다. 열하중과 기계하중이 동시에 작용하는 환경에서의 C(t)-적분을 예측하는 것은 복잡하며 하중조건이 달라지는 경우에는 더욱더 복잡해진다. 본 논문에서는 열하중과 기계하중의 하중조건이 달라지는 여러 조건에 대한 C(t)-적분 평가식을 제시하였다.