DOI QR코드

DOI QR Code

Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide

Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석

  • Jang, Jung-Chel (Department of Material Science and Engineering, Hanyang University) ;
  • Choi, Sung-Churl (Department of Material Science and Engineering, Hanyang University)
  • 장중철 (한양대학교 신소재공학과) ;
  • 최성철 (한양대학교 신소재공학과)
  • Published : 2006.08.01

Abstract

The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

Keywords

References

  1. G. C. Chang and R. A. Miller, 'Behavior of Thermal Barrier Coatings for Advanced Gas Turbine Blades,' Surface and Coating Technology, 30 [1] 13-28 (1987) https://doi.org/10.1016/0257-8972(87)90004-1
  2. A. G. Evans, D. R. Mumm, J. W. Hutchinson G. H. Meier, and F. S. Pettit, 'Mechanisms Controlling the Durability of Thermal Barrier Coatings,' Progress in Mater. Sci., 46 505- 53 (2001) https://doi.org/10.1016/S0079-6425(00)00020-7
  3. J. Muller and D. Neuschutz, 'Efficiency of $\alpha$-Alumina as Diffusion Barrier between Bond Coat and Bulk Material of Gas Turbine Blades,' Vacuum, 71 247-51 (2003) https://doi.org/10.1016/S0042-207X(02)00746-7
  4. W. J. Brindley and R. A. Miller, 'hermal Barrier Coating Life and Isothermal Oxidation of Low-Pressure Plasma- Sprayed Bond Coat Alloys,' Surface and Coating Technology, 43 [1-3] 446-57 (1990) https://doi.org/10.1016/0257-8972(90)90054-G
  5. S. Sivakumar and B. L. Mordike, 'High Temperature Coatings for Gas Turbine Blades: A Reviews,' Surface and Coating Technology, 37 139-60 (1989) https://doi.org/10.1016/0257-8972(89)90099-6
  6. P. W. Schilke, 'Advanced Gas Turbine Materials and Coatings,' GER-3569G, GE Energy Technical Document
  7. K. Kokini, Y. R. Takeuchi, and B. D. Chulus, 'Surface Thermal Cracking Owing to Stress Relaxation; Zirconia vs. Mullite,' Surface and Coating Technology, 82 77-82 (1996) https://doi.org/10.1016/0257-8972(95)02647-9
  8. B. D. Choulus, K. Kokini, and T. A. Taylor, 'Thermal Fracture of Ceramic Thermal Barrier Coatings under High Heat Flux with Time-Dependent Behavior-Part I: Experiment Results,' Mater. Sci. Eng., A299 296-304 (2001)
  9. R. C. Hendricks and G. McDonald, 'The Effect of Annealing on the Creep of Plasma Sprayed Ceramics,' pp. 13-6, Presented in Seventh Annual Conference on Ceramics and Advances Materials, Cocoa Beach, Florida, Jan., 1983
  10. T. Xu, M. Y. He, and A. G. Evans, 'A Numerical Assessment of the Durability of Thermal Barrier Systems that Fail by Ratcheting of the Thermally Grown Oxide,' Acta Mater., 51 3807-20 (2003) https://doi.org/10.1016/S1359-6454(03)00194-0
  11. J. Schwarzer, D. Lohe, and O. Vohringer, 'Influence of the TGO Creep Behavior on Delamination Stress Development in Thermal Barrier Coating Systems,' Mater. Sci. Eng. A, 387-389 692-95 (2004) https://doi.org/10.1016/j.msea.2004.05.039
  12. M. Martena, D. Botto, P. Fino, S. Sabbadini, M. M. Gola, and C. Badini, 'Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch,' Engineering Failure Analysis, 13 [3]409-26 (2006) https://doi.org/10.1016/j.engfailanal.2004.12.027
  13. J. C. Jang and S. C. Choi, 'Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings(in Korean),' J. Kor. Ceram. Soc., 43 [7] 415-50 (2006) https://doi.org/10.4191/KCERS.2006.43.7.415
  14. J. T. DeMasi-Marcin, K. D. Sheffler, and S. Bose, 'Mechanisms of Degradation and Failure in a Plasma Deposited Thermal Barrier Coating,' J. Eng. Gas Turb. Power, 112 521-29 (1989)
  15. A. M. Freborg, B. L. Ferguson, W. J. Brindley, and G. J. Petrus, 'Modeling Oxidation Induced Stresses in Thermal Barrier Coatings,' Mater. Sci. Eng. A, 245 [1] 182-90 (1998) https://doi.org/10.1016/S0921-5093(97)00849-6
  16. Y. C. Zhou and T. Hashida, 'Coupled Effects of Temperature Gradient and Oxidation on Thermal Stress in Thermal Barrier Coating System,' International Journal of Solid and Structures, 38 4235-64 (2001) https://doi.org/10.1016/S0020-7683(00)00309-7

Cited by

  1. Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.396