• 제목/요약/키워드: Thermal Crack

검색결과 736건 처리시간 0.026초

수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구 (A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration)

  • 이승민;노형남;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF

초기분말의 결정상이 $Al_2O_3$를 소결 조제로한 고온가압 SiC 세라믹스의 기계적 특성에 미치는 영향 (Effect of Starting Crystallographic Phase on the Mechanical Properties of Hot-Pressed SiC Ceramics)

  • 정동익;강을손;최원봉;백용기
    • 한국세라믹학회지
    • /
    • 제29권3호
    • /
    • pp.232-240
    • /
    • 1992
  • Densification behavior, microstructural evolution, and mechanical properties of hot-pressed specimens using $\beta$-SiC and $\alpha$-SiC powder with Al2O3 additive were studied. Beta-SiC powder was fully densified as 205$0^{\circ}C$, but $\alpha$-SiC powder was at 210$0^{\circ}C$. The maximum flexural strength and the fracture toughness of the specimen hot-pressed using $\beta$-SiC powder were 681 MPa and 6.7 MPa{{{{ SQRT {m } }}, and thosevalues of specimen hot-pressed using $\alpha$-SiC powder were 452 MPa and 4.7 MPa{{{{ SQRT {m } }}, respectively. The strength superiority of specimen hot-pressed using $\beta$-SiC powder was due to the finer grain size, and higher density. The higher toughness of specimen hot-pressed using $\beta$-SiC powder than $\alpha$-SiC powder than $\alpha$-SiC powder was due to the crack deflection mechanism arised from the difference of thermal expansion coefficient between $\alpha$ and $\beta$-SiC phases which were co-existed in the sintered body.

  • PDF

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 파손을 막기 위한 본딩패드의 합리적 설계 (Optimum Design of Bonding Pads for Prevention of Passivation Damage in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique)

  • 이성민;김종범
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.69-73
    • /
    • 2008
  • 본 연구에서는 리드-온-칩 패키징 기술을 이용한 반도체 제품에서 디바이스의 패드의 위치가 온도변화로 인한 신뢰성 문제에 대단히 중요하다는 것을 보여준다. 컴퓨터를 이용한 이론적 계산 및 실험을 통해 패시베이션 파손으로 대변되는 신뢰성 문제가 디바이스의 코너 부위에 위치한 패턴에서 가장 심하게 발생할 수 있다는 것을 보여준다. 따라서, 패시베시션 파손 등으로 인한 디바이스의 신뢰성 저하를 예방하기 위해서는 취약한 패드 부위는 다바이스의 테두리 부위보다는 중앙부위에 위치하도록 설계하는 것이 바람직하다는 것을 본 연구에서는 지적하고 있다.

  • PDF

고온에서의 형상기억복합재료의 비파괴평가에 관한 연구 (A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature)

  • 강동현;이진경;박영철;구후택;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF

철도차량 차륜의 기계적 특성 및 잔류응력평가 (Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel)

  • 서정원;권석진;이동형;전홍규;박찬경
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발 (On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier)

  • 김정환;김유일
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

피코초 레이저를 이용한 Eagle Glass 절단 시 가공성 평가 (Processing Evaluations of the Eagle Glass Cutting Using Pico-second Laser)

  • 이상균;이영곤;김재도
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.403-408
    • /
    • 2013
  • In this paper, the characteristics of ablation processing of the eagle glass by pico-second laser are investigated. The laser ablation is used to process micro forms on materials. The ablation causes little thermal effect and little burr on the surface of eagle glass. In order to examine the characteristics of panic cracks, experiments are conducted under various cutting conditions such as a frequency of 600 kHz, laser powers, scan speeds and number of scan(NS). To minimize the panic cracks, the specimens are heated at $30^{\circ}C$, $45^{\circ}C$, and $60^{\circ}C$ for ten minutes respectively and then they are broken by hands. Laser powers, NS and scan speeds have an effect on glass cutting results. The ablation depths increase with an increase in the laser power and NS whereas the panic cracks decrease with an increase in scan speed. The high temperature on processed specimens reduces the panic cracks and makes good results of laser cutting. The optimal condition for eagle glass laser cutting is found to be at 30 W of laser power, 3 mm/s of scan speed and 500 of NS, respectively.

EDM을 이용한 가스터빈 회전익의 냉각공기 유로내벽 표면균열 제거 (Surface Crack Removal by EDM for Inside Cooling Hole of Gas Turbine Blade)

  • 강신호;김대은
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.54-61
    • /
    • 2003
  • The first stage rotating blade of industrial gas turbine is one of the components that is normally run in exposed state at the highest temperature of the combustion gas stream. For this reason superior materials and advanced cooling technology are required to allow higher heat resisting characteristics of the component. The 1st stage blade of a selected commercial gas turbine blade made of directionally solidified Ni-based superalloy has a row of cooling holes on its trailing edge. In most cases, minor cracks have been found at some of the root cooling holes after one cycle operation (24,000 hrs) or even shorter operation time because of the high temperature gradient and the frequently alternating thermal stress. In the repair process, unfortunately, it is usually very difficult to get rid of the damage due to the fact that cracks are initiated at the root cooling hole and propagated deep into the hole. In this study, the feasibility of removing the sidewall cracks in the hole by utilizing EDM drilling has been investigated. Also the criteria of surface integrity for EDM drilling were established to achieve high quality repair as well as machining accuracy.