• Title/Summary/Keyword: Thermal Convection

Search Result 719, Processing Time 0.025 seconds

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

Numerical Simulations on the Thermal Flow and Particle Behaviors in the Gas Reversal Chamber of a Syngas Cooler for IGCC (IGCC 합성가스 냉각기 GRC의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In the Shell coal gasification process, the syngas produced in a gasifier passes through a syngas cooler for steam production and temperature control for gas cleaning. Fly slag present in the syngas may cause major operational problems such as erosion, slagging, and corrosion, especially in the upper part of the syngas cooler (gas reversal chamber, GRC). This study investigates the flow, heat transfer and particle behaviors in the GRC for a 300 MWe IGCC process using computational fluid dynamics. Three operational loads of 100%, 75% and 50% were considered. The gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. The heat transfer to the wall was mainly by convection which was larger on the side wall at the inlet level due to the expansion of the cross-section. In the evaporator below the GRC, the particles were concentrated more on the outer channels, which needs to be considered for alleviation of fouling and blockage.

Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software (전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Prediction of the Apparent Temperature of an Object under the Infrared Waveband (적외선 파장대에서의 물체의 겉보기온도 예측)

  • Jung, Jinsoo;Kauh, S. Ken;Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.352-363
    • /
    • 1999
  • Target detection by the infrared imager depends on the apparent temperature difference between the target and the background, so it is essential to predict apparent temperature variations for this purpose. In this study, thermal analysis program Including conduction, convection and radiation is developed and applied to a representative geometry adequate for examining the apparent temperature characteristics. The results show that the longwave emissivity in association with the background temperature affects the apparent temperature strongly but does not affect the physical temperature. It is revealed that the background temperature plays a role of tuning the apparent temperature. As the longwave emissivity decreases, the apparent temperature decreases when the target is hotter than the background, whereas it increases in the reversed situation. These findings imply that an effective surface treatment, such as painting of a less emissive material, may provide a less detection probability and contribute to preventing the target from being detected at night.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

A Study on the Removal of Slagging and Fouling for an Optimal Operation of Power Utility Boilers (보일러 최적운전을 위한 슬래깅 및 파울링 제거 연구)

  • Yook, Sim-Kyun;Kim, Sung-Ho;Lee, Byeong-Eun;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1772-1780
    • /
    • 2003
  • An optimal soot blowing system has been developed for an optimal operation of power utility boilers by both minimization of the use of steam and the number of soot blowers worked during soot blowing. Traditionally, the soot blowing system has been operated manually by operators. However, it causes the reduction of power and thermal performance degradation because all soot blowers installed in the plant should be worked simultaneously even there are lots of tubes those are not contaminated by slagging or fouling. Heat transfer area is divided into four groups, furnace, convection area including superheater, reheater and economizer, and air preheater in the present study. The condition of cleanness of the tubes is calculated by several parameters obtained by sensors. Then, a part of soot blowers works automatically where boiler tubes are contaminated. This system has been applied in a practical power plant. Therefore, comparison has been done between this system and manual operation and the results are discussed.

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Variability of Underwater Sound Propagation in the Northern Part of the East Sea (동해 북부해역의 수중음파전달 변동성)

  • Lim, Se-Han;Yun, Jae-Yul;Kim, Yun-Bae;Nam, Sung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.52-61
    • /
    • 2007
  • Temporal and spatial variations of sea water largely affect on the pattern of underwater sound propagation. Acoustic environmental changes and their effects on underwater sound propagation in the northern part of the East Sea, which have been poorly studied mainly due to lack of observations, are investigated by analyzing the hydrographic data acquired since 1993. Severe changes in acoustic environments are associated with various physical processes such as deep convection, thermal fronts, and eddies in the northern part of the East Sea. Spatio-temporal variations of sound speed field and the layer of the maximum sound speed are categorized into six typical cases. Using a sound source of 5 kHz, acoustic transmission losses are calculated range-independently for the six typical cases. Significant differences among the patterns of transmission loss in the six cases suggest that a different tactics are required when we operate in the northern part of the East Sea.

NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES (다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석)

  • Kim, S.M.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.92-99
    • /
    • 2011
  • In order to protect the turbine blade from working fluid of high temperature, many cooling techniques such as internal convection cooling, film cooling, impinging jet cooling and thermal barrier coating have been developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. Among the film cooling holes, the dumbbell shaped hole shows better film-cooling effectiveness than the other shaped holes. And the louver and cylindrical shaped hole show the worst film cooling performance, and concentrated flows on near the centerline only.