• 제목/요약/키워드: Thermal Conductivity Measurement

검색결과 213건 처리시간 0.026초

용액 플라즈마 공정을 이용하여 제조된 금 나노유체의 특성평가 (Synthesis and Characterization of Glold Nanofluid Prepared by the Solution Plasma Processing)

  • 허용강;이상율
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.342-346
    • /
    • 2010
  • In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with $64.0{\pm}42.1\;nm{\sim}18.10{\pm}5.0\;nm$ in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of $18.10\;{\pm}\;5.0\;nm$ in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.

목질마루바닥재와 벽체용 재료를 이용한 평판열류계법과 MTPS (Modified Transient Plane Source)법의 열전도율 상관관계 분석 (Correlation Analysis of the Thermal Conductivity Heat Flow Meter and MTPS (Modified Transient Plane Source) Method Using Wood Flooring and Wall Materials)

  • 차정훈;서정기;김수민
    • 한국가구학회지
    • /
    • 제22권2호
    • /
    • pp.118-125
    • /
    • 2011
  • These days global warming is the most important problem and the most important factor is high emission of carbon dioxide. The 23% of carbon dioxide emission for building construction must be reduced. Thermal conductivity is the most basic factor that can decrease the energy consumption especially insulation. Therefore, an accurate and continuous thermal conductivity measurement can be a way to save energy. In this paper, there are methods about how to investigate thermal conductivity measurements and comparing two methods which are the Heat Flow Meter 436 and TCi.

  • PDF

수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구 (An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE))

  • 임경빈;이상훈;성낙원;이창희
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.

원자로 모의 다공질 매체의 유효 열전달 계수 측정 (Measurement of the Effective Thermal Conductivity of Porous Media in the Mockup Apparatus of Reactor Vessel)

  • 김용균;황종선;이용범;최석기;남호윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of Al powder porous media where stainless steel tubes were installed with different geometry. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method.

  • PDF

고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가 (Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

수직형 지중열교환기 열전도도 측정기술에 관한 연구 (A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger)

  • 김지영;이의준;장기창;강은철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

초기 지중온도 측정이 지중 열교환기 설계에 미치는 영향 (Effect of initial ground temperature measurement on the design of borehole heat exchanger)

  • 송윤호;김성균;이강근;이태종
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.600-603
    • /
    • 2009
  • We compared relative importance of thermal conductivity and initial ground temperature in designing borehole heat exchanger network and also we test accuracy of ground temperature estimation in thermal response test using a proven 3-D T-H modeler. The effect of error in estimating ground temperature on calculated total length of borehole heat exchanger was more than 3 times larger than the case of thermal conductivity in maximum 20% error range. Considering 10% of error in estimating thermal conductivity is generally acceptable, we have to define the initial ground temperature within 5% confidence level. Utilizing the mean annual ground surface temperature and the geothermal gradient map compiled so far can be a economic way of estimating ground temperature with some caution. When performing thermal response test for estimating ground temperature as well as measuring thermal conductivity, minimum 100 minutes of ambient circulation is required, which should be even more in case of very cold and hot seasons.

  • PDF

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal;Anil Prasad;Jayangani Ranasinghe;Ericmoore Jossou;Lukas Bichler;Jerzy Szpunar
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3725-3731
    • /
    • 2023
  • Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.