• Title/Summary/Keyword: Thermal Characteristic Analysis

Search Result 458, Processing Time 0.027 seconds

Thermal Characteristic Analysis Of Induction Heating Roll According to Primary Material (1차측 재질에 따른 유도가열의 특성해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Lee, J.H.;Park, H.C.;Park, C.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.736-738
    • /
    • 2001
  • Induction heating is utilized in a large and ever-increasing number of application. The most prominent of these are billet heating, heat treating, metals joining, and metal melting. In these day, heating roll, a kind of induction heating, is widely used in curing of coatings and fiber industry. In this paper, we analyzed thermal characteristic analysis of induction heating roll according to primary material. Using this analysis results, efficiency of induction heating roll could be improved.

  • PDF

Numerical Study on Human Model's Shape and Grid Dependency for Indoor Thermal Comfort Evaluation (실내 온열쾌적성 평가를 위한 인체 모델링 및 격자특성에 대한 수치해석적 연구)

  • Park, J.H.;Seo, J.W.;Choi, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.210-217
    • /
    • 2011
  • Recently, research on evaluating thermal comfort by using CFD has been vigorously active. This research evaluates not only distribution of temperature and air flow analysing but also thermal comfort in indoor space by applying human model. But research of human model's shape, Grid characteristic and turbulence model has not yet been studied. In this paper, human model's shape, physical characteristic of variable Grid, and change of turbulence model has been studies by CFD. In this study. FLUENT is used for analysis and PMV(predicted Mean Vote), PPD(Predicted Percentage Dissatisfied) and EHT(Equivalent Homogeneous Temperature} are used for evaluation and comparison of thermal comfort. As a result, it shows that shape of CSP and lattice features does not affect on global flow field or evaluation on PMV, PPD. However, it demonstrates more precise result from evaluation of thermal comfort by equivalent temperature when it used detailed human model considering prism grid.

  • PDF

Thermal Behavior Analysis in Continuous Bloom Casting Mold (Bloom용 연속주조 몰드의 열거동 해석)

  • 정영진;김성훈;김영모;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • Continuous casting machine has been experienced a rapid development to increase productivity with high casting speed and to meet consumer's strict demands for high quality. However, because most of defects and cracks are initially formed in mold and grown into surface cracks during the post process, more specific and clear investigations upon heat transfer mechanism between mold and solidified shell are necessarily needed. In this study heat transfer coefficients which shows the characteristic of heat transfer mechanism are calculated with temperatures measured in bloom mold using optimal algorithm, and thermal analysis are investigated using the calculated heat transfer coefficients. Finally uniformity of solidified shell is investigated for high carbon steel, 0.187%C from thermal analysis.

A Study on Combustion Characteristics and Flow Analysis of a Lean Premixed Flame in Lab-Scale Gas Turbine Combustor (모형 가스터빈 연소기에서 희박 예혼합 화염의 연소 특성 및 유동 해석에 관한 연구)

  • Ryu, Hye-Yeon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.574-581
    • /
    • 2008
  • The characteristics of combustion and flow for a lean premixed flame in lab-scale gas turbine combustor was studied through experiment and numerical analysis. From the experiment, flame structure and heat release rate were obtained from OH emission spectroscopy. Qualitative comparisons were made line-integrated OH chemiluminescence image and abel-transformed one. NOx analyzer was implemented to get the characteristic of NOx exhaust from the combustor. From the numerical analysis, the thermal distribution and characteristic of recirculation zone with the change of fuel-air mixing degree, the characteristic of methane distribution with equivalence ratio in the combustor respectively. Total heat release rate is increased with increasing equivalence ratio. Thermal Nox is reduced with increasing fuel-air mixing degree. Increasing equivalence ratio results in the decrease of the size of reaction zone and alteration of the position of the reaction zone into the entrance of the combustor.

Performance evaluation of MPCM to apply for radiant floor heating system (바닥난방시스템 적용을 위한 MPCM 성능평가)

  • Jeong, Su-Gwang;Jeon, Ji-Soo;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.475-479
    • /
    • 2012
  • Thermal energy storage (TES) systems using Microencapsulated phase change material (MPCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. We examined a way to incorporate MPCMs with building materials through application for wood-based flooring. Wood-based flooring is commonly used for floor finish materials of residential buildings in Korea. However, wood-based flooring has not performed the characteristic of heat storage. This study is aimed at manufacturing high thermal efficiency wood flooring by increasing its heat storage using MPCM. As a result, this study confirmed that MPCM is dispersed well in adhesive through the scanning electron microscopy analysis. From the differential scanning calorimetry analysis, it can be confirmed that this composite has the characteristic of a thermal energy storage material. Also, we analyzed how this composition was formed by physical combination through the Fourier transform infrared analysis. Also, we confirmed the bonding strength of the material by using the universal testing machine.

  • PDF

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

Thermal Characteristic Estimation of NC Machining Center Bed following Rib Structure (리브 구조에 따른 머시닝센터 베드의 열적 특성 평가)

  • Kim, Yang-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.746-752
    • /
    • 2010
  • Rib structure has been used to bed and column of machine tool to heighten weight stiffness ratio, cost performance and weight saving. In this paper the bed rib structure was estimated with thermal characteristics. Using superposition principle, machine tool designer can describe every complicated heat generation in the machine tool thermal source. As thermal characteristics, thermal deformation of guide rail and column and Maximum-minimum temperature variation were selected. The size, configuration and direction against the thermal loading surface operated to the thermal characteristics. The DB chart was made following rib structure estimating thermal characteristics. With superposition principle and DB chart, machine tool designer can prognosticate the thermal characteristics without FEM analysis to every bed rib structure.

Finite-element modeling and analysis of time-dependent thermomechanical distortion of optical sheets in a LCD module

  • Lee, Jae-Won;Hwang, Hak-Mo;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1436-1441
    • /
    • 2006
  • Each type of optical sheets in a LCD module experiences a characteristic behavior for thermal loading and unloading. During thermal cycling, a polymeric behavior is reversible and recyclable, depending on a material stiffness critically affected by temperature and time. Some critical issues on temperature- and time-dependent themomechanical deformation of the polymeric sheet are addressed by finite-element thermal results, followed by structural simulation results in this study.

  • PDF

Evaluation of Thermal Strain Effect on Pintle Nozzle using by FSI (유체-구조 연성해석을 이용한 핀틀-노즐 열변형 영향 평가)

  • La, Giwon;Lee, Kyungwook;Lee, Jongkwang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1048-1050
    • /
    • 2017
  • In this study, Numerical simulations of the pintle-nozzle were performed to evaluate the thermal strain effect using by 1-way fluid structure interaction analysis(FSI). we carried out computational fluid dynamics analysis to obtain the pressure and temperature fields of pintle nozzle. we then used the data as the load condition for a FSI separately. and thermal strain of the pintle was checked. In order to confirm the change of thrust characteristic by deformation, we are carrying out 2-way FSI.

  • PDF

A Study on Dead-Zone Turbine Control System (불감대 특성을 지닌 터빈제어 계통에 관한 연구)

  • Hwang, Jae-Ho;Lee, Sang-Hyug;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.332-336
    • /
    • 1989
  • This paper describes the nonlinear analysis and effectual operation methods of thermal power plant turbine control system. When the turbine control governor system has dead-zone characteristic, the effectual frequency development control is difficult, because turbine output does not correspond to frequency deviation in dead-zone. Therefore to obtain effectual correspondance, the turbine dead-zone characteristic must be analyzed by proper method. This paper proposes this nonlinear analysis and effectual plant operating load.

  • PDF