• Title/Summary/Keyword: Thermal Changes

Search Result 1,948, Processing Time 0.027 seconds

Changes in Physical Properties of Fibrous Sound Absorption Materials According to the Manufacturing Time (제조시점에 따른 섬유상 흡음재의 물리적 특성 변화)

  • Jeong, Young-Sun;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.562-568
    • /
    • 2014
  • This study aimed to identify changes in the physical properties of artificial mineral-fiber materials used as building insulation that had been installed in the outer walls of buildings for a long time. To achieve this goal, glass fiber and rock wool were collected from outer walls in actual buildings and their acoustic and thermal performances were measured. These were compared with measurements from similar products manufactured recently. The results showed that old, used samples had a lower sound absorption coefficient compared to recently manufactured materials. The old samples also displayed increased compressibility compared to new materials. For example, the compressibility difference for glass wool was 7.32 mm. Old samples had a dynamic stiffness $1.28MN/m^3$ higher than new material samples. The thermal conductivity of both old and new samples increased within creasing temperature. They showed similar results at temperatures between 0 and $20^{\circ}C$.

An Experimental Study of the Variation of the Moisture Content of Plywood and the Change of Thermal Conductivity of Plywood According to its Moisture Content (습도 조건에 따른 합판의 함수율 변화와 함수율에 따른 합판의 열전도율 변화에 대한 실험적 연구)

  • Lee, Jin-Sung;Kim, Kyung-Su;Kang, Jung-Kyoo;Yoo, Chang-hyuck
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.367-371
    • /
    • 2018
  • Plywood is one of the important materials in LNG cargo containment systems, and, due to the characteristics of the wood, its properties vary greatly depending on the humidity conditions in the storage facility. Due to the distribution environment of plywood, there is a high probability of long-term exposure to the domestic seasonal environment. Considering an environment in which the humidity changes greatly according to the seasons in Korea and the characteristics of the wood, it is necessary to acquire data on changes in the characteristics of the plywood for accurate quality control. In this study, the moisture content of plywood was determined experimentally to reflect the seasonal environmental conditions of shipyards in Korea. A noticeable change in the thermal conductivity was confirmed experimentally.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Changes of residents' indoor environment control behavior as a result of provided education and environmental information (거주자의 실내환경 관리행동에 교육 및 정보제공이 미치는 효과)

  • Bae, Nu-Ri;Choi, Yoo-Rim;Chun, Chung-Yoon
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.269-274
    • /
    • 2006
  • The purposes of this research are, first, to investigate the present condition of indoor thermal environment in winter. Second, to find out how residents' knowledge, consciousness, and behavior changed after provided with education and information of indoor climate. Finally, to reveal how this changes make alteration to their indoor environment. Thirty apartments were collected, and then divided into three groups as Control Group, Education Group, and Edu-information Group in order to conduct the purposes. Provided education and environmental information turn out to have a positive effect to residents' knowledge, consciousness, and behavior, and consequently, it leads residents to control their indoor environment more actively in some cases. Thus, it is important to provide residents with environmental education and information, and it should be conducted regularly in order to maximize the positive effect of education since it tends to decrease as time goes by.

  • PDF

The Study on 4MW Energy Storage System for Frequency Regulation (주파수 조정을 위한 4MW 전력 저장 시스템 연구)

  • Koh, Kwang-Soo;Lee, Chung-Woo;Kang, Byung-Kwan;Oh, Seung-Hun;Lee, Yun-Jae;Choi, Eun-Sik;Ryu, Kang-Yeul;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.125-126
    • /
    • 2013
  • ESS(Energy Storage System) for Improve the quality of the power grid, supply reliability, system stability and the efficient operation method of power is drawing attention. According to changes in the load of the power system frequency will be adjustable in real time in response to changes in the frequency of the grid, so thermal power output is mainly controlled in order to keep the grid frequency stable. ESS for adjusting the frequency of the grid when the frequency rises to grid and charge the energy storage device. If the frequency drops to discharge the battery power to the grid and the future is expected to replace the thermal power plant. This paper describes 4MW ESS for the frequency regulation and find out about the characteristics through the PSCAD/EMTDC.

  • PDF

dispersion and relaxation of Epoxy/Layered Nanocomposite (에폭시/나노층상복합재료의 유전분산과 완화)

  • Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

Changes of Silk Fibroin Molecular Weight by Plastein Reaction (Plastein反應에 의한 絹피브로인의 分子量變化)

  • 김동건;판부막;소사효
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.131-135
    • /
    • 1998
  • Changes of silk fibroin molecular weight was studied by enzymatic proteolysis and reverse reaction of enzymatic proteolysis (plastein reaction) using chromatography, X-ray diffraction and thermal analysis methods. When the treatment of enzymatic proteolysis with $\alpha$-chymotripsin to silk fibroin solution, a precipitate of Fcp fractions was formed. And, this was dissolved in LiBr aqueous solution, the precipitate of PIFcp fractions was obtained again. Fcp and PIFcp fractions showed silk IIand silk Itype structure, respectively. Fcp fractions was about 6,900 in molecular weight, PIFcp fractions obtained by plastein reaction on the precipitate of Fcp fractions increased molecular weight to abort 15,000. The molecular weight of Fcp fractions was increased by plastein reaction, but Fcp fractions almost transited to silk I type crystal. The structure of silk I type of PIFcp fractions was steady identified by X-ray diffraction and thermal analysis. As molecular weight of Fcp fractions was gradually low, PIFcp fractions was become to macromolecule little by little.

  • PDF

Physicochemical Changes in UV-Exposed Low-Density Polyethylene Films

  • Salem, M.A.;Farouk, H.;Kashif, I.
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.168-173
    • /
    • 2002
  • Unstabilized low-density polyethylene (LDPE) films and films formulated with hindered amine light stabilizer (HALS) were exposed to UV-radiation; and the physicochemical changes during photooxidation processes have been investigated using tensile, FTIR spectre-photometric and thermal analytical (DSC) techniques. The dependence of tensile properties (elongation- and stress-at-break), carboxyl index and heat of fusion on UV-irradiation time have been discussed. The use of HALS is found to be effective in maintaining the UV-mechanical properties of the LDPE films. The experimental results showed that there exists no correlation between mechanical properties and carbonyl index, whereas crystallinity correlates well with carbonyl index in unstabilized and stabilized films for irradiation times greater than 100 h. The rate of formation of carbonyl groups is found to be dependent on UV exposure time. Crystallinity of the film samples is strongly influenced by both exposure time and presence of HALS.

Development of a algorithm for thermal stress analysis of turbine rotor (터빈 로터 열응력 해석 알고리즘 개발)

  • Chang, S.H.;Baek, S.K.;Chung, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2284-2289
    • /
    • 1998
  • The Rotor Stress Indicator is an integrated system of hardware and program components which has been designed to read an assortment of turbine temperature and speed input devices, perform an analysis of the temperature induced stresses and output pertinent temperature and stress information to guide the turbine operator during turbine prewarming, start-ups, load changes, and shut-downs. The purpose of the RSI is to provide guidance to the plant operator during startup, shutdown, loading, and unloading of the turbine. Since the stresses are a function of the temperature changes to which the turbine is exposed, the RSI also provides guidance for operation of the boiler main steam and reheat steam temperatures as they affect the rotor stresses. This may permit more efficient overall boiler turbine start-ups. In this paper, new rotor stress analysis algorithm for RSI is introduced and compared with present system which has been used in thermal power plant.

  • PDF