• Title/Summary/Keyword: Thermal Changes

Search Result 1,936, Processing Time 0.027 seconds

Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load (주기적인 반복 열하중에 노출된 광섬유 센서의 신뢰성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are currently the most prevalent sensors because of their unique advantages such as ease of multiplexing and capability of performing absolute measurements. They are applied to various structures for structural health monitoring (SHM). The signal characteristics of FBG sensors under thermal loading should be investigated to enhance the reliability of these sensors, because they are exposed to certain cyclic thermal loads due to temperature changes resulting from change of seasons, when they are applied to structures for SHM. In this study, tests on specimens are conducted in a thermal chamber with temperature changes from -$20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. For the specimens, two types of base materials and adhesives that are normally used in the manufacture of packaged FBG sensors are selected. From the test results, it is confirmed that the FBG sensors undergo some degree of compressive strain under cyclic thermal load; this can lead to measurement errors. Hence, a pre-calibration is necessary before applying these sensors to structures for long-term SHM.

Analysis of a forest healing environment based on the thermal comfort and NVOC characteristics of Chungnam National University Experimental Forests

  • Hyelim Lee;Dawou Joung;Siok An;Doyun Song;Bum-Jin Park;Seungmo Koo
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.983-993
    • /
    • 2022
  • The purpose of this study is to provide information on a forest healing environment using the analysis of nature volatile organic compounds (NVOCs) and thermal comfort in Chungnam National University Experimental Forest, with the aim of using the Experimental Forest as a healing environment for health promotion. We analyzed NVOCs and thermal comfort of Chungnam National University Experimental Forest measured on September 12th, 2021. As a result of the NVOC analysis, a total of seven substances were detected, mainly including alpha pinene and beta pinene. The detection amount for each time period was highest at the time of sunset. The thermal comfort was analyzed by time-dependent changes and changes according to clothing and exercise amount. The results showed that the predicted mean vote of the experimental forest is within the range of 'slightly cool' and 'slightly warm' sensation, and thus a comfortable thermal environment could be controlled by the amount of clothing and activity. Based on the analysis, this study provides information on the healing environment of the experimental forest at Chungnam National University. It also indicates that the forest can be used as a health promotion and healing environment with thermal comfort by composing a physical activity program of appropriate intensity for each time period.

Signal Analysis of Inverter-Type Outdoor Unit for Detecting Operation Changes of Commercial Refrigerator (상업용 냉장고의 상황 감지를 위한 인버터형 실외기 신호 분석)

  • Lim, Hyo Joon;Lee, Ju Kyoung;Hwang, Jun Hyeon;Lee, Kyung Chang;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.517-523
    • /
    • 2016
  • Unlike household refrigerators, commercial refrigerators are composed of separate indoor and outdoor units. The outdoor unit of most commercial refrigerators is designed to run at a fixed speed, which results in low energy efficiency and loud fan noise. Moreover, it cannot respond flexibly to changing thermal load in the indoor unit. Inverter type outdoor units can address such problems through speed changes based on information obtained from the indoor unit. However, using two units from different manufacturers is often not a viable solution. If condition changes in the indoor unit can be detected without communication between the two units, it is possible to adjust the speed of the outdoor unit. This paper attempts to analyze the signal from the outdoor unit when the condition of the indoor unit changes by varying the thermal load.

A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes (노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구)

  • Baik, Jae-Sang;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

A study on the improvement of the thermal properties of ZnO arrester blocks (산화아연 피뢰기 소자의 열적 특성 향상을 위한 연구)

  • Kim, Dong-Seong;Lee, Su-Bong;Lee, Seung-Ju;Kim, Dong-Kyu;Yang, Soon-Man;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.335-338
    • /
    • 2009
  • In this study, in order to investigate the thermal and electrical properties of ZnO arrester block against 60[Hz] AC voltage, the changes in leakage current were measured. The temperature distribution appearing on the ZnO arrester blocks was observed using a forward looking infrared camera. In particular, the correlation between the thermal and electrical properties of a ZnO arrester block was analyzed experimentally. From this analysis, the thermal phenomena resulting from the heat generation and dissipation of the ZnO arrester block were interpreted. The degradation and thermal runaway phenomena of ZnO arrester block are closely related to the temperature limit of the ZnO arrester block. The installation of an additional metal electrode has resulted in the decrease of the leakage current due to the heat dissipation.

  • PDF

Optimal Control of the Thermal Printhead with variable Division (가변분할을 통한 열전사헤드의 최적제어)

  • Yeom, H.J.;Jun, D.G.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.338-341
    • /
    • 1997
  • The current consumption and the heat produced in the printhead of thermal printer are mainly governed by total printing dots and printing time for each line. Simple algorithm is proposed to optimize the performance of a thermal printhead, which use variable division according to bit-mapped data of its 1 line. And, for protecting the thermal printhead from exceeding heat, I control the heat energy of each microheater(dots) on the thermal printhead through changes in the applied pulse width.

  • PDF

Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing

  • Kim, Dookie;Oh, Ju;Do, Jeongyun;Park, Jinyoung
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • Laminated rubber bearing is very popular base isolation of earthquake engineering pertaining to the passive structural vibration control technologies. Rubber used in fabricating NRB and LRB can be easily attacked by various environmental factors such as oxygen, heat, light, dynamic strain, and organic liquids. Among these factors, this study carried out thermal aging test to investigate the effect of thermal aging on the mechanical properties of laminated rubber bearings in accelerated exposure condition of $70^{\circ}C$ temperature for 168 hours. The compressive-shear test was carried out to identify the variation of compressive and shear properties of the rubber bearings before and after thermal aging. In contrast to tensile strength and elongation tests, the hardness of rubber materials showed the increasing tendency dependent on exposure temperature and period. Based on the test results, the property changes of rubber bearing mainly aged by heat are quantitatively presented.

Autogenous Shrinkage of VES-LMC considering Thermal Deformation (VES-LMC의 열 변형을 고려한 자기수축)

  • Choi Pan Gil;Lee Jin Bum;Choi Seung Sic;Yun Kyong Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.781-784
    • /
    • 2005
  • Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior .of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

A Thermal Conductivity Model for Hydrating Concrete Pavements

  • Jeong Jin-Hoon;Kim Nakseok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.125-129
    • /
    • 2004
  • Hydrating concrete pavement is typically subjected to temperature-induced stresses that drive cracking mechanisms at early concrete ages. Undesired cracking plays a key role in the long-term performance of concrete pavement systems. The loss of support beneath the concrete pavement due to curling caused by temperature changes in the pavement may induce several significant distresses such as punch out pumping, and erosion. The effect of temperature on these distress mechanisms is both significant and intricate. Because thermal conductivity dominates temperature flow in hydrating concrete over time, this material property is back-calculated by transforming governing equation of heat transfer and test data measured in laboratory. Theoretically, the back- calculated thermal conductivity simulates the heat movements in concrete very accurately. Therefore, the back- calculated thermal conductivity can be used to calibrate concrete temperature predicted by models.

The Analysis of Temperature Distribution Electric incoming Apparatus Using a Infrared Thermal Imaging System (적외선 열화상 카메라를 이용한 수전설비 온도분포해석)

  • Jeong, Seung-Cheon;Lim, Yeung-Bae;Kim, Jong-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1113-1116
    • /
    • 2004
  • This paper presents the method for analyzing surface temperature of Electric incoming Apparatus. For the experiment, the surface temperature of electric power apparatus was measured and analyzed by using a infrared thermal imaging system. Surface Discharges(SD) have very complex characteristics of discharge patterns, therefore it requires the development of precise analysis methods. recently, studies on infrared thermal imaging system are carried out to analyze temperature distribution of power equipments through condition diagnosis and to diagnose the degradation of power equipments. The changes in suface temperature was measured by using the infrared thermal imaging system under hot line condition. The system was set up based on the diagnostic method of the electric incoming apparatus.

  • PDF