• 제목/요약/키워드: Thermal Capacity

검색결과 1,288건 처리시간 0.032초

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

과도탐침법을 이용한 액체의 열물성 동시측정 (The simultaneous measurement for thermal properties of liquids using transient probe method)

  • 배신철;김명윤
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.303-315
    • /
    • 1997
  • The theoretical model for the transient probe method is the modified Jaeger model which is used perfect line source theory. The transient probe technique has been developed for the simultaneous determination of thermal conductivity, diffusivity and volumetric heat capacity of liquids. The Levenberg-Marquardt iteration method is adapted to obtain thermal property within nonlinear range. Experimental results of liquids were found to agree well with recommended thermal property data.

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2001년도 전지기술심포지움
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

전극재에 의한 실리콘 고무의 C-V 특성에 관한 연구 (A Study on Properties of C-V of Silicone Rubber due to Electrode Materials)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.721-726
    • /
    • 2015
  • In this study, the properties of C-V degradation for thermal conductivity silicone rubber sample which is attached by copper-copper, copper-aluminum, aluminum-aluminum on upper-side and under-side has been measured at temperature of $80^{\circ}C{\sim}140^{\circ}C$. The results of this study are as follows. In case the frequency is increased, it found that the electrostatic capacity increased with increasing temperature to $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$ regardless of kind of electrode. It found that the electrostatic capacity increased with becoming high temperature range of frequency regardless of kind of electrode. This result is considered to be caused by thermal absorption on the thermal conductivity silicone rubber sample. It found that the electrostatic capacity decreased with increasing temperature and frequency. This result is considered to be caused by molecular motion of C-F radical or OH radical.

미립피복 로릭산 슬러리의 관내 대류 열전달에 관한 연구 (A study on convective heat transfer with microcapsulated lauric acid slurry in circular pipe)

  • 정동주;최은수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1554-1559
    • /
    • 2003
  • The objective of the present study is to reveal thermal characteristic of microcapsulated lauric acid slurry, which have high latent heat during phase change from solid to liquid, in circular pipe. Test were performed with microcapsulated lauric acid slurry in a heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the size of microcapsulated lauric acid were increased, Local Nusselt number of microcapsulated lauric acid slurry were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 0.5 times than it of water

  • PDF

아이스 슬러리의 수송 및 냉열이용에 관한 연구 (A Study on Transport and Heat Utilization of Ice Slurries)

  • 길복임;이윤표;정동주;조봉현;최은수
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

축열식 심야전력기기를 위한 축열량 제어기 설계 (Design of a Controller for the Heat Capacity of Thermal Storage Systems Using Off-Peak Electricity)

  • 이은욱;양해원
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1211-1217
    • /
    • 2001
  • This paper presnts a controller for the heat capacity of thermal storage systems using off-peak electricity which is composed of an identifier using neural networks and a storage time adjuster in order to store exactly the required thermal energy without loss. Since thermal storage systems have nonlinear characteristics and large time constant, even if we predict the heating load accurately, it is very difficult to store exactly the required thermal energy. Thus, in the neural network for the identifier, the adaptive learning rate for high learning speed and bit inputs based on state changes of thermal storage power source are used. Also a hardware for the controller using a microprocessor is developed. The performance of the proposed controller is shown by experiment.

  • PDF

Recent Progress in Cathode Materials for Thermal Batteries

  • Ko, Jaehwan;Kang, Seung Ho;Cheong, Hae-Won;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.233-255
    • /
    • 2019
  • Thermal batteries are reserve batteries with molten salts as an electrolyte, which activates at high temperature. Due to their excellent reliability, long shelf life, and mechanical robustness, thermal batteries are used in military applications. A high-performance cathode for thermal batteries should be considered in terms of its high capacity, high voltage, and high thermal stability. Research progress on cathode materials from the recent decade is reviewed in this article. The major directions of research were surface modification, compounding of existing materials, fabrication of thin film cathode, and development of new materials. In order to develop a high-performance cathode, a proper combination of these research directions is required while considering mass production and cost.

단순모델에 의한 회전형 열교환기 이론해석 (Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model)

  • 손성균;김용찬;이대영
    • 설비공학논문집
    • /
    • 제27권8호
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.

대기오염에 따른 화력발전소의 한계용량산전에 관한 연구 (A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control)

  • 임한석
    • 전기의세계
    • /
    • 제26권2호
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF