• Title/Summary/Keyword: Thermal Bridge

Search Result 295, Processing Time 0.024 seconds

Thermal Effect of Guss Asphalt on Upper Steel Deck of Youngjong Grand Bridge (영종대교 상로도로 강상판의 구스아스팔트 열영향)

  • Lee, Wan-Hoon;Lee, Myeong-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.171-181
    • /
    • 2002
  • Guss asphalt used in pavement of a steel deck bridge may cause severe stress and displacement on the bridge as it is treated using very high temperatures ranging from 220oC to 260cC. Therefore, it is critical to estimate the thermal effect of Guss asphalt on the steel deck bridge before the width and pattern of the unit portion are decided in order to minimize impact. In this study, we have conducted a series of numerical analysis of the upper road of Youngjong Grand Bridge, verified the feasibility of numerical value analysis by comparing the results with the data measured, and studied the thermal effects of Guss asphalt on the steel deck bridge according to temperature changes.

  • PDF

Numerical Modeling of Heat Analysis of Bridge Pavement (포장 열영향 해석을 위한 아스팔트 열원 평가)

  • Lee, Wan-Hoon;Yoo, Byoung-Chan;Chung, Heung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.253-258
    • /
    • 2007
  • Guss asphalt used in pavement of a steel deck bridge may cause severe stress and displacement on the bridge as it is treated using very high temperatures ranging from $220^{\circ}C$ to $260^{\circ}C$. Therefore, it is critical to estimate the thermal effect of Guss asphalt on the steel deck bridge before the width and pattern of the unit portion are decided to minimize impact. In this study, introduce a new analysis method styled the Heat source of equivalent of the cable stayed bridge were conducted to verify the feasibility of numerical value analysis by comparing the results with the data measured. The thermal effects of Guss asphalt on the steel deck bridge according to temperature changes were also studied.

  • PDF

The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM (유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계)

  • Shin, Dong-Hyeon;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

An Application of Equivalent Heat Source for Thermal Analysis of Pavement Process (포장시 열영향 해석을 위한 등가열원의 적용성)

  • Lee, Wan-Hoon;Yoo, Byoung-Chan;Chung, Heung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.391-399
    • /
    • 2008
  • Because of relatively high temperature, over $240^{\circ}C$, of asphalt for steel deck bridge during pavement procedure, the temperature of deck could rise over $100^{\circ}C$ and undesirable excessive displacement and thermal stress could occur. In this study, in order to estimate the thermal effect of pavement process and to find the optimal pavement process, a new thermal analysis technique with Equivalent Heat Source (EHS) is proposed and its applicability to the practical pavement of steel bridge is studied. EHS is developed to simulate the high temperature pavement materials and its thermal effect such as conduction and convection which cannot be explain easily in general structural analysis program for bridge design. To verify the applicability of new analysis technique with EHS, thermal analyses of steel deck bridge with uplift and curved bridge with various pavement procedures are presented.

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

The Fire induced Thermal Stress Analysis of PC Box Bridge (PC Box교량의 화재에 대한 열응력해석)

  • 최창근;이계희;최인혁;김일곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.125-132
    • /
    • 1998
  • In this study the fire, due to overturning of oil tanker on the bridge induced heat transfer analysis and thermal stress analysis are carried out. The results of analysis for fire history of 1 hour present very large thermal gradient near the surface. However, the temperature increase of tendon & rebar that is the main resistant member of bridge is not sufficient to change material properties. The Von-Mises yield criteria is used to calculate the depth of delamination, The depth of delamination is about 4cm at center of fire and this value is close to measured value.

  • PDF

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.