• Title/Summary/Keyword: Thermal Behaviors

Search Result 776, Processing Time 0.027 seconds

Thermal Behaviors of (Cu0.5Mn0.5)Fe2O4 for H2 production by thermochemical cycles (열화학싸이클 수소를 제조를 위한 (Cu0.5Mn0.5)Fe2O4의 열적 거동)

  • Kim, J.W.;Choi, S.C.;Joo, O.S.;Jung, K.D.
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Thermal behaviors of $(Cu_{0.5}Mn_{0.5})Fe_2O_4$, prepared by a solid method, were investigated for $H_2$ production by a thermochemical cycle. The thermal reduction of $(Cu_{0.5}Mn_{0.5})Fe_2O_4$ started from $300^\circ{C}$ and the weight loss was 1.3 wt% up to 1200. XRD shows the prepared ferrite has the spinel structure with a lattice constant of $8.414{\AA}$ and changed to the oxygen deficient structure by thermal reduction. Oxygen and hydrogen can be separately produced by the cycles of thermal reduction and water oxidation of the oxygen deficient ferrite.

ASSESSMENT OF MARS FOR DIRECT CONTACT CONDENSATION IN THE CORE MAKE-UP TANK (노심보충수탱크의 직접접촉응축에 대한 MARS의 계산능력평가)

  • Park, Keun Tae;Park, Ik Kyu;Lee, Seung Wook;Park, Hyun Sik
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.64-72
    • /
    • 2014
  • This study aimed at assessing the analysis capability of thermal-hydraulic computer code, MARS for the behaviors of the core make-up tank (CMT). The sensitivity study on the nodalization to simulate the CMT was conducted, and the MARS calculations were compared with KAIST experimental data and RELAP5/MOD3.3 calculations. The 12-node model was fixed through a nodalization study to investigate the effect of the number of nodes in the CMT (2-, 4-, 8-, 12-, 16-node). The sensitivity studies on various parameters, such as water subcooling of the CMT, steam pressure, and natural circulation flow were done. MARS calculations were reasonable in the injection time and the effects of several parameters on the CMT behaviors even though the mesh-dependency should be properly treated for reactor applications.

Thermal behavior of groundwater-saturated Korean buffer under the elevated temperature conditions: In-situ synchrotron X-ray powder diffraction study for the montmorillonite in Korean bentonite

  • Park, Tae-Jin;Seoung, Donghoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1511-1518
    • /
    • 2021
  • In most countries, the thermal criteria for the engineered barrier system (EBS) is set to below 100 ℃ due to the possible illitization in the buffer, which will likely be detrimental to the performance and safety of the repository. On the other hand, if the thermal criteria for the EBS increases, the disposal density and the cost-effectiveness for the high-level radioactive wastes will dramatically increase. Thus, fundamentals on the thermal behavior of the buffer under the elevated temperatures is of crucial importance. Yet, the behaviors at the elevated temperatures of the bentonite under groundwater-saturated conditions have not been reported to-date. Here, we have developed an in-situ synchrotron-based method for the thermal behavior study of the buffer under the elevated temperatures (25-250 ℃), investigated dspacings of the montmorillonite in the Korean bentonite (i.e., Ca-type) at dry and KURT (KAERI Underground Research Tunnel) groundwater-saturated conditions (KJ-ii-dry and KJ-ii-wet), and compared the behaviors with that of MX-80 (i.e., Na-type, MX-80-wet). The hydration states analyzed show tri-, bi-, and mono-hydrated at 25, 120, and 250 ℃, respectively for KJ-ii-wet, whereas tri-, mono-, and de-hydrated at 25, 150, and 250 ℃, respectively for MX-80-wet. The Korean bentonite starts losing the interlayered water at lower temperatures; however, holds them better at higher temperatures as compared with MX-80.

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

Experimental Study of Material Effects on the Flame Behaviors in Meso-scale Rectangular Channels (메소 스케일 사각 채널 내 예혼합 화염의 거동에 미치는 벽면 물성의 영향에 관한 실험적 연구)

  • Guahk, Young Tae;Lee, Dae Keun;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.97-98
    • /
    • 2013
  • Flame behaviors in meso-scale rectangular channels are largely influenced by heat recirculation through wall. In order to investigate the effects of wall thermal property on the heat recirculation and flame behaviors, meso-scale rectangular channels, of which upper and lower walls are made of quartz, stainless steel and silicon carbide and front and rear walls of quartz for flame visualization, were fabricated in this study. As a result, characteristic mixture velocities of propane-air flame, such as transition, stationary, and instability onset velocities, were measured for each channel and various mixture conditions. The results show that thermal conductivity has a close relationship to the characteristic velocities.

  • PDF

Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels (연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동)

  • Kim, H.C.;Lee, J.H.;Kwon, O.D.;Yim, C.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.