• 제목/요약/키워드: Thermal Actuator

검색결과 140건 처리시간 0.026초

자계-열계 시스템의 3차원 위상최적설계 (3-D Topology Optimization of Magneto-Thermal Systems)

  • 심호경;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.939-941
    • /
    • 2005
  • This research presents a 3D multi-objective approach regarding both magnetic and thermal characteristics associated with design of C-core actuator. The adjoint variable topology sensitivity equations are derived using the continuum method for three dimension. The sensitivity is verified using the Finite Difference Method(FDM). Convection interpolation function is proposed for density method of topologies such that convection term can be taken into consideration for practical design in the process of the optimization.

  • PDF

Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric

  • Mokhtar Ellali;Khaled Amara;Mokhtar Bouazza
    • Coupled systems mechanics
    • /
    • 제13권2호
    • /
    • pp.171-186
    • /
    • 2024
  • In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to be temperature independent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are derived based on higher order shear deformation plate theory. Influences of several important parameters on the critical thermal buckling temperature are investigated and discussed in detail.

흘로그램 간섭계를 이용한 광픽업 베이스의 미소 열변형 측정 (Measurement of Micro Thermal Deformation of Optical Pick-up Base Using Holographic Interferometry)

  • 서영민;강신일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2002
  • In optical pick-up, optical components such as objective lens, collimator, mirror, laser diode and photo diode are mounted on the pick-up base. These components must keep their original position during operation for proper transmittance of information from laser diode to optical disk and back to photo diode. However, micro thermal deformation of pick-up base which is induced by thermal environment during operation can deteriorate the performance of optical pick-up. Therefore, it is important to measure and analyze the thermal deformation behavior of pick-up base under thermal environment. In the present study, a measurement system using holographic interferometry was designed to measure micro thermal deformation of pick up base. The measurement system was verified by using the deformation of cantilever with prescribed motion actuated by PZT with 1 nm resolution. Interferometric measurement was compared quantitatively with that induced by PZT actuator. Finally, micro thermal deformation of pick-up base under actual thermal environment was measured using the present holographic interferometry and the results were analysed.

  • PDF

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

공기구동밸브의 열노화에 따른 성능평가 (Performance Analysis of Air Operated Valve by Thermal Aging)

  • 이선기
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.93-98
    • /
    • 2015
  • Nuclear power plants has a number of valves, which are operating at a high temperature-high pressure and radiation environment conditions. Nevertheless, it is important to maintain the reliability of the valves to ensure safe operation of the nuclear power plant. However, the aging of the valves by increasing of years of plant operation and the system transients due to the sudden load change are working the failures of the reliability of the valve. In this paper, we evaluate experimentally the performance change according to the thermal aging of the valve. Results show that the valve stem and the actuator leakages were enlarged by the thermal aging.

원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구 (A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants)

  • 양종대;양석조;이용범
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.

프리필용 체크밸브의 유압진동 특성에 관한 연구 (A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve)

  • 박정우;한성민;이후승;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권3호
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

형상기억합금을 이용한 소형 위성용 분리장치의 성능평가 (Performance evaluation on the separation device activated by shape memory alloy actuator)

  • 최준우;이동규;황국하;이민형;김병규
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.635-640
    • /
    • 2015
  • 본 논문에서는 형상기억합금 구동기를 이용한 소형위성용 비폭발식 분리장치를 소개한다. 앞선 연구결과를 바탕으로 분리장치의 부품의 교체를 통하여 제안된 분리장치의 신뢰성을 향상시킴으로써 고사전하중(preload) 하에서도 구동이 가능하도록 하였다. 또한 충격 실험을 통하여 비폭발식분리장치의 장점인 저충격 발생을 확인하였고, 발사환경 및 우주 환경실험을 통하여 안정적으로 작동하는 것을 검증하였다. 결론적으로 본 연구에서는 충격실험, 진동실험 및 열진공실험 후 고사전하중에서 저충격을 발생시키며 안정적으로 작동 가능한 비폭발식 분리장치를 개발하였다.

초정밀가공기용 오차보상시스템 및 기상측정장치 개발 (Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF