• Title/Summary/Keyword: Thermal Ablation

Search Result 170, Processing Time 0.028 seconds

Comparison of Thermal Ablation and Surgery for Low-Risk Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis

  • Hyun Jin Kim;Se Jin Cho;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1730-1741
    • /
    • 2021
  • Objective: Although thermal ablation is effective in treating low-risk papillary thyroid microcarcinomas (PTMCs), comparison of treatment outcomes between thermal ablation and surgery has not yet been systematically evaluated. This study aimed to compare the efficacy and safety of thermal ablation and surgery for the treatment of low-risk PTMCs. Materials and Methods: Ovid-MEDLINE and EMBASE databases were searched for studies reporting comparisons of treatment results between thermal ablation and surgery for patients with low-risk PTMC published up to April 6, 2020. The analysis evaluated the efficacy (local tumor recurrence, occurrence of new tumor, metastasis, and rescue surgery) and safety (complication rate) of thermal ablation and surgery. Results: This systematic review included four studies with a total of 339 PTMCs in 339 patients who underwent thermal ablation and 320 PTMCs in 314 patients who underwent surgery. There was no local tumor recurrence or distant metastasis in either group. There was no significant difference in the pooled proportion of lymph node metastasis (2.6% with thermal ablation vs. 3.3% with surgery, p = 0.65), occurrence of new tumors (1.4% with thermal ablation vs. 1.3% with surgery, p = 0.85), or rescue surgery (2.6% with thermal ablation vs. 1.6% with surgery, p = 0.62). However, the pooled complication rate was significantly higher in the surgery group than in the ablation group (3.3% with thermal ablation vs. 7.8% with surgery, p = 0.03). Conclusion: Both thermal ablation and surgery are effective and safe options for the management of low-risk PTMCs, with thermal ablation achieving a lower complication rate. Therefore, thermal ablation may be considered as an alternative treatment option for low-risk PTMC in patients who refuse surgery and active surveillance or are ineligible for surgery.

Thermal decomposition and ablation analysis of solid rocket propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.113-122
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Assessment of Local Tumor Progression After Image-Guided Thermal Ablation for Renal Cell Carcinoma

  • Byung Kwan Park
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2024
  • Focal enhancement typically suggests local tumor progression (LTP) after renal cell carcinoma is percutaneously ablated. However, evaluating findings that are false positive or negative of LTP is less familiar to radiologists who have little experience with renal ablation. Various imaging features are encountered during and after thermal ablation. Ablation procedures and previous follow-up imaging should be reviewed before determining if there is LTP. Previous studies have focused on detecting the presence or absence of focal enhancement within the ablation zone. Therefore, various diagnostic pitfalls can be experienced using computed tomography or magnetic resonance imaging examinations. This review aimed to assess how to read images during or after ablation procedures, recognize imaging features of LTP and determine factors that influence LTP.

Two-dimensional Thermal Analysis for Carbonacious Thermal Liner of Rocket Nozzle with Ablation and In-depth Pyrolysis (삭마 및 내부 열분해를 고려한 로켓노즐 탄소계 내열재의 2차원 열해석)

  • 황기영;강윤구
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.37-47
    • /
    • 1999
  • This paper describes the thermal analysis which can calculate the ablation depth and temperature distribution of the rocket nozzle liner allowing geometry change caused by the ablation of nozzle liner. In this analysis, Zvyagin's model is used for surface ablation and Yaroslavtseva's model for in-depth pyrolysis. A deforming finite-element grid is used to account for external-boundary movement due to the erosion of thermal liner. The accuracy of the present numerical method is evaluated with a rocket nozzle liner and the numerical solutions are favorably agreed with experimental data. The temporal variations of temperature and ablation depth at the thermal liner of another rocket nozzle are numerically simulated and the results are discussed. Special emphasis is given to the effects of kinetic constants for carbon-carbon and carbon-phenolic composites on the ablation depth of thermal liner.

  • PDF

Comparison of Ablation Performance between Octopus Multipurpose Electrode and Conventional Octopus Electrode

  • Sae-Jin Park;Jae Hyun Kim;Jeong Hee Yoon;Jeong Min Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Objective: To compare Octopus multipurpose (MP) electrodes, which are capable of saline instillation and direct tissue temperature measurement, and conventional electrodes for radiofrequency ablation (RFA) in porcine livers in vivo. Materials and Methods: Sixteen pigs were used in this study. In the first experiment, RFA was performed in the liver for 6 minutes using Octopus MP electrodes (n = 15 ablation zones) and conventional electrodes (n = 12 ablation zones) to investigate the effect of saline instillation. The ablation energy, electrical impedance, and ablation volume of the two electrodes were compared. In the second experiment, RFA was performed near the gallbladder (GB) and colon using Octopus MP electrodes (n = 12 ablation zones for each) with direct tissue temperature monitoring and conventional electrodes (n = 11 ablation zones for each). RFA was discontinued when the temperature increased to > 60℃ in the Octopus MP electrode group, whereas RFA was performed for a total of 6 minutes in the conventional electrode group. Thermal injury was assessed and compared between the two groups by pathological examination. Results: In the first experiment, the ablation volume and total energy delivered in the Octopus MP electrode group were significantly larger than those in the conventional electrode group (15.7 ± 4.26 cm3 vs. 12.5 ± 2.14 cm3, p = 0.027; 5.48 ± 0.49 Kcal vs. 5.04 ± 0.49 Kcal, p = 0.029). In the second experiment, thermal injury to the GB and colon was less frequently noted in the Octopus MP electrode group than that in the conventional electrode group (16.7% [2/12] vs. 90.9% [10/11] for GB and 8.3% [1/12] vs. 90.9% [10/11] for colon, p < 0.001 for all). The total energy delivered around the GB (2.65 ± 1.07 Kcal vs. 5.04 ± 0.66 Kcal) and colon (2.58 ± 0.57 Kcal vs. 5.17 ± 0.90 Kcal) were significantly lower in the Octopus MP electrode group than that in the conventional electrode group (p < 0.001 for all). Conclusion: RFA using the Octopus MP electrodes induced a larger ablation volume and resulted in less thermal injury to the adjacent organs compared with conventional electrodes.

Coupled Analysis of Structure and Surface Ablation in Solid Rocket Nozzle (삭마반응을 고려한 고체 추진기관 노즐 조립체의 열반응 및 구조해석)

  • Kim, Yun-Chul;Doh, Young-Dae;Hahm, Hee-Cheol;Moon, Soon-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.565-569
    • /
    • 2011
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermo-structural analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code.

  • PDF

The Effect of using Gamma Titanium RF Electrodes on the Ablation Volume during the Radiofrequency Ablation Process

  • Mohammed S. Ahmed;Mohamed Tarek El-Wakad;Mohammed A. Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Radiofrequency ablation (RFA) is an alternative treatment for liver cancer to the surgical intervention preferred by surgeons. However, the main challenge remains the use of RF for the ablation of large tumours (i.e., tumours with a diameter of >3 cm). For large tumours, RFA takes a large duration in the ablation process compared with surgery, which increases patient pain. Therefore, RFA for large tumours is not preferred by surgeons. The currently materials used in RF electrodes, such as the nickeltitanium alloy (nitinol), are characterized by low thermal and electrical conductivities. On the other hand, the use of materials that have high thermal and electrical conductivities, such as titanium aluminide alloy (gamma titanium), produces more thermal energy for tumours. In this paper, we developed a cool-tip RF electrode model that uses nickel-titanium alloy and replaced it with titanium aluminide alloy by using the finite element model (FEM). The aim of this paper is to study the effect of the thermal and electrical conductivities of gamma titanium on the ablation volume. Results showed that the proposed design of the electrode increased the ablation rate by 1 cm3 /minute and 6.3 cm3/10 minutes, with a decrease in the required time ablation. Finally, the proposed model reduces the ablation time and damages healthy tissue while increasing the ablation volume from 22.5% cm3 to 62.5% cm3 in ten minutes compared to recent studies.

Thermal decomposition and ablation analysis of solid rocket nozzle using MSC.Marc (상용해석 코드(MSC-Marc)를 활용한 노즐 내열부품의 숯/삭마 해석 기법)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.311-314
    • /
    • 2009
  • A two-dimensional thermal response and ablation simulation code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem and endothermic reaction in thermal decomposition are solved by rezoning and effective specific heat method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF