• Title/Summary/Keyword: Therapeutic potential

Search Result 2,256, Processing Time 0.028 seconds

Systematic exploration of therapeutic effects and key mechanisms of Panax ginseng using network-based approaches

  • Young Woo Kim;Seon Been Bak;Yu Rim Song;Chang-Eop Kim;Won-Yung Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.373-383
    • /
    • 2024
  • Background: Network pharmacology has emerged as a powerful tool to understand the therapeutic effects and mechanisms of natural products. However, there is a lack of comprehensive evaluations of network-based approaches for natural products on identifying therapeutic effects and key mechanisms. Purpose: We systematically explore the capabilities of network-based approaches on natural products, using Panax ginseng as a case study. P. ginseng is a widely used herb with a variety of therapeutic benefits, but its active ingredients and mechanisms of action on chronic diseases are not yet fully understood. Methods: Our study compiled and constructed a network focusing on P. ginseng by collecting and integrating data on ingredients, protein targets, and known indications. We then evaluated the performance of different network-based methods for summarizing known and unknown disease associations. The predicted results were validated in the hepatic stellate cell model. Results: We find that our multiscale interaction-based approach achieved an AUROC of 0.697 and an AUPR of 0.026, which outperforms other network-based approaches. As a case study, we further tested the ability of multiscale interactome-based approaches to identify active ingredients and their plausible mechanisms for breast cancer and liver cirrhosis. We also validated the beneficial effects of unreported and top-predicted ingredients, in cases of liver cirrhosis and gastrointestinal neoplasms. Conclusion: our study provides a promising framework to systematically explore the therapeutic effects and key mechanisms of natural products, and highlights the potential of network-based approaches in natural product research.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Synthesis of Heterocyclic Substituted Pyridine Analogs as Potential Therapeutics for Neurodegenerative Diseases

  • Park, Haeil;Peter A. Crooks
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1999.04a
    • /
    • pp.1-4
    • /
    • 1999
  • The potential therapeutic benefit of nicotinic ligands in a variety of neurodegenerative pathologies involving the CNS has energized research efforts to develop nicotinic acetylcholine receptor (nAChR) subtype-selective ligands. In particular, there has been a concerted effort to develop nicotinic compounds with selectivity for CNS nAChRs as potential pharmacological tools in the management of these disorders. The characterization of other novel nicotinic ligands such as epibatidine. showing a marked increase in potency at nAChRs, has provided additional support for the development of potent, selective ligands at individual nAChR subtypes. We have developed and studied a number of nicotinic compounds to identify potential candidates exhibiting such selectivity. In the present study, we report the synthesis and biological evaluations of some azabicyclic and azatricyclic nicotine analogs to decipher the relationship among steric requirements of the nicotine's pyrrolidine ring system, binding affinity and subtype-selectivity.

  • PDF

Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury

  • Uddin, Md Jamal;Dorotea, Debra;Pak, Eun Seon;Ha, Hunjoo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.213-221
    • /
    • 2020
  • Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.

Topical Application of S1P2 Antagonist JTE-013 Attenuates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice

  • Kang, Jisoo;Lee, Ju-Hyun;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.537-541
    • /
    • 2020
  • Sphingosine-1-phosphate (S1P) and its receptors have been implicated in atopic dermatitis. S1P2 was found to function as a proallergic receptor, while its antagonist JTE-013 was found to suppress allergic asthma in mice. Topical application of JTE-013 has not been investigated in an in vivo model of atopic dermatitis. Therefore, the therapeutic potential of JTE-013 topical application was evaluated by the use of a 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model. DNCB-induced inflammation and mast cell accumulation in skin tissues were significantly suppressed by topical JTE-013 treatment in BALB/c mice. DNCB-induced increase of lymph nodes sizes and elevated inflammatory cytokines (IL-4, IL-13, IL-17, and IFN-γ) in lymph nodes were also significantly reduced by the JTE-013 treatment. Elevated serum levels of IgE were significantly suppressed by the topical treatment of JTE-013. In summary, the topical treatment of JTE-013 S1P2 antagonist suppressed DNCB-induced atopic dermatitis symptoms and immune responses. These results suggested JTE-013 as a potential therapeutic agent for atopic dermatitis.

Atorvastatin: In-Vivo Synergy with Metronidazole as Anti-Blastocystis Therapy

  • Basyoni, Maha M.A.;Fouad, Shawky A.;Amer, Marwa F.;Amer, Ahmed Fathy;Ismail, Dalia Ibrahim
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • Blastocystis is an enteric Straminopile in tropical, subtropical and developing countries. Metronidazole has been a chemotheraputic for blastocystosis. Failures in its regimens were reported and necessitate new studies searching for alternative therapeutic agents. Aim of current study is to investigate potential effects of Atorvastatin (AVA) compared to the conventional chemotherapeutic MTZ in experimentally Blastocystis-infected mice. Anti-Blastocystis efficacy of AVA was evaluated parasitologically, histopathologically and by transmission electron microscopy using MTZ (10 mg/kg) as a control. Therapeutic efficacy of AVA were apparently dose-dependent. Regimens of AVA (20 and 40 mg/kg) proved effective against Blastocystis infections with highreduction in Blastocystis shedding (93.4-97.9%) compared to MTZ (79.3%). The highest reductions (98.1% and 99.4%)were recorded in groups of combination treatments AVA 20-40 mg/kg and MTZ 10 mg/kg. Blastocystis was nearly eradicated by the 20th day post infection. Genotype analysis revealed that genotype I was most susceptible, genotype III was less. Histopathologic and ultrastructural studies revealed apoptotic changes in Blastocystis and significant improvement of intestinal histopathological changes more remarkable in combinational therapy groups. Thus, the present study offers AVA as a potential candidate for Blastocystis therapy combined with MTZ.

In vitro and in vivo Evaluation of the Antitumor Efficiency of Resveratrol Against Lung Cancer

  • Yin, Hai-Tao;Tian, Qing-Zhong;Guan, Luan;Zhou, Yun;Huang, Xin-En;Zhang, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1703-1706
    • /
    • 2013
  • Lung cancer remains a deadly disease with unsatisfactory overall survival. Resveratrol (Res) has the potential to inhibit growth of several types of cancer such as prostate and colorectal examples. In the current study, we evaluated in vitro and in vivo anticancer efficiency of Res in a xenograft model with A549 cells. Cell inhibition effects of Res were measured by MTT assay. Apoptotis of A549 cells was assessed with reference to caspase-3 activity and growth curves of tumor volume and bodyweight of the mice were measured every two days. In vitro cytotoxicity evaluation indicated Res to exert dose-dependent cell inhibition effects against A549 cells with activation of caspase-3. In vivo evaluation showed Res to effectively inhibit the growth of lung cancer in a dose-dependent manner in nude mice. Therefore, we believe that Res might be a promising phytomedicine for cancer therapy and further efforts are needed to explore this potential therapeutic strategy.

Heme Oxygenase-1 as a Potential Therapeutic Target for Hepatoprotection

  • Farombi, Ebenezer Olatunde;Surh, Young-Joon
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.479-491
    • /
    • 2006
  • Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-${\kappa}B$) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.

Suppression of Human Fibrosarcoma Cell Metastasis by Phyllanthus emblica Extract in Vitro

  • Yahayo, Waraporn;Supabphol, Athikom;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6863-6867
    • /
    • 2013
  • Phyllanthus emblica (PE) is known to exhibit various pharmacological properties. This study aimed to evaluate the antimetastatic potential of a PE aqueous extract. Cytotoxicity to human fibrosarcoma cells, HT1080, was determined by viability assay using the 3-(4,5-dimethylthiazol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Cell migration and invasion were investigated using chemotaxis chambers containing membranes precoated with collagen IV and Matrigel, respectively. Cell attachment onto normal surfaces of cell culture plates was tested to determine the cell-adhesion capability. The molecular mechanism of antimetastatic activity was assessed by measuring the gene expression of matrix metalloproteinases, MMP2, and MMP9, using reverse transcription-polymerase chain reaction (RT-PCR) assay. The mRNA levels of both genes were significantly down-regulated after pretreatment with PE extract for 5 days. Our findings show the antimetastatic function of PE extract in reducing cell proliferation, migration, invasion, and adhesion in both dose- and time-dependent manners, especially growth arrest with low $IC_{50}$ value. A decrease in the expression of both MMP2 and MMP9 seems to be the cellular mechanism for antimetastasis in this case. There is a high potential to use PE extracts clinically as an optional adjuvant therapeutic drug for therapeutic intervention strategies in cancer therapy or chemoprevention.

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.