DOI QR코드

DOI QR Code

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry) ;
  • Cha, Yong Hoon (Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry) ;
  • Kim, Hyun Sil (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry) ;
  • Kim, Nam Hee (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry) ;
  • Yook, Jong In (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry)
  • Received : 2017.09.12
  • Accepted : 2017.10.19
  • Published : 2018.01.01

Abstract

During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

Keywords

References

  1. Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. and Maley, C. C. (2013) Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883-892. https://doi.org/10.1038/nrc3606
  2. Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J.-K., Shen, M., Bellinger, G., Sasaki, A. T., Locasale, J. W., Auld, D. S., Thomas, C. J., Vander Heiden, M. G. and Cantley, L. C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283. https://doi.org/10.1126/science.1211485
  3. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. (2006) TIGAR, a p53- inducible regulator of glycolysis and apoptosis. Cell 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
  4. Berg, J. M., Tymoczko, J. L. and Stryer, L. (2010) Biochemistry. W. H. Freeman, New York.
  5. Bokun, R., Bakotin, J. and Milasinovic, D. (1987) Semiquantitative cytochemical estimation of glucose-6-phosphate dehydrogenase activity in benign diseases and carcinoma of the breast. Acta Cytol. 31, 249-252.
  6. Bouzier-Sore, A. K. and Bolanos, J. P. (2015) Uncertainties in pentosephosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front. Aging Neurosci. 7, 89.
  7. Cabezas, H., Raposo, R. R. and Melendez-Hevia, E. (1999) Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol. Cell. Biochem. 201, 57-63. https://doi.org/10.1023/A:1007042531454
  8. Carson, P. E., Flanagan, C. L., Ickes, C. E. and Alving, A. S. (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484-485.
  9. Cha, Y. H., Yook, J. I., Kim, H. S. and Kim, N. H. (2015) Catabolic metabolism during cancer EMT. Arch. Pharm. Res. 38, 313-320. https://doi.org/10.1007/s12272-015-0567-x
  10. Chambers, A. F., Groom, A. C. and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563-572. https://doi.org/10.1038/nrc865
  11. Chandel, N. S., Budinger, G. R., Choe, S. H. and Schumacker, P. T. (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808-18816.
  12. Cheung, E. C., Ludwig, R. L. and Vousden, K. H. (2012) Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. U.S.A. 109, 20491-20496. https://doi.org/10.1073/pnas.1206530109
  13. Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L. and Cantley, L. C. (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.
  14. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. and Cantley, L. C. (2008b) Pyruvate kinase M2 is a phosphotyrosinebinding protein. Nature 452, 181-186. https://doi.org/10.1038/nature06667
  15. Clem, B., Telang, S., Clem, A., Yalcin, A., Meier, J., Simmons, A., Rasku, M. A., Arumugam, S., Dean, W. L., Eaton, J., Lane, A., Trent, J. O. and Chesney, J. (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110-120. https://doi.org/10.1158/1535-7163.MCT-07-0482
  16. Cocco, P., Carta, P., Flore, C., Congia, P., Manca, M. B., Saba, G. and Salis, S. (1996) Mortality of lead smelter workers with the glucose-6-phosphate dehydrogenase-deficient phenotype. Cancer Epidemiol. Biomarkers Prev. 5, 223-225.
  17. Cocco, P., Manca, P. and Dessi, S. (1987) Preliminary results of a geographic correlation study on G6PD deficiency and cancer. Toxicol. Pathol. 15, 106-108. https://doi.org/10.1177/019262338701500116
  18. Decrock, E., Hoorelbeke, D., Ramadan, R., Delvaeye, T., De Bock, M., Wang, N., Krysko, D. V., Baatout, S., Bultynck, G., Aerts, A., Vinken, M. and Leybaert, L. (2017) Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim. Biophys. Acta 1864, 1099-1120.
  19. Diehn, M., Cho, R. W., Lobo, N. A., Kalisky, T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L. and Clarke, M. F. (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783.
  20. Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331. https://doi.org/10.1016/j.ccr.2013.01.022
  21. Dore, M. P., Davoli, A., Longo, N., Marras, G. and Pes, G. M. (2016) Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: A retrospective observational study. Medicine (Baltimore) 95, e5254. https://doi.org/10.1097/MD.0000000000005254
  22. Du, W., Jiang, P., Mancuso, A., Stonestrom, A., Brewer, M. D., Minn, A. J., Mak, T. W., Wu, M. and Yang, X. (2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 15, 991-1000. https://doi.org/10.1038/ncb2789
  23. Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B. and Rabinowitz, J. D. (2014) Quantitative flux analysis reveals folatedependent NADPH production. Nature 510, 298-302. https://doi.org/10.1038/nature13236
  24. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. https://doi.org/10.1038/35041687
  25. Gordon, G., Mackow, M. C. and Levy, H. R. (1995) On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch. Biochem. Biophys. 318, 25-29. https://doi.org/10.1006/abbi.1995.1199
  26. Jiang, P., Du, W., Wang, X., Mancuso, A., Gao, X., Wu, M. and Yang, X. (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310-316. https://doi.org/10.1038/ncb2172
  27. Kang, S. W., Lee, S. and Lee, E. K. (2015) ROS and energy metabolism in cancer cells: alliance for fast growth. Arch. Pharm. Res. 38, 338-345. https://doi.org/10.1007/s12272-015-0550-6
  28. Kim, N. H., Cha, Y. H., Lee, J., Lee, S. H., Yang, J. H., Yun, J. S., Cho, E. S., Zhang, X., Nam, M., Kim, N., Yuk, Y. S., Cha, S. Y., Lee, Y., Ryu, J. K., Park, S., Cheong, J. H., Kang, S. W., Kim, S. Y., Hwang, G. S., Yook, J. I. and Kim, H. S. (2017) Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun. 8, 14374. https://doi.org/10.1038/ncomms14374
  29. Kim, N. H., Kim, H. S., Li, X. Y., Lee, I., Choi, H. S., Kang, S. E., Cha, S. Y., Ryu, J. K., Yoon, D., Fearon, E. R., Rowe, R. G., Lee, S., Maher, C. A., Weiss, S. J. and Yook, J. I. (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417-433. https://doi.org/10.1083/jcb.201103097
  30. Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301. https://doi.org/10.1007/s12272-015-0551-5
  31. Ko, Y. H., Domingo-Vidal, M., Roche, M., Lin, Z., Whitaker-Menezes, D., Seifert, E., Capparelli, C., Tuluc, M., Birbe, R. C., Tassone, P., Curry, J. M., Navarro-Sabate, A., Manzano, A., Bartrons, R., Caro, J. and Martinez-Outschoorn, U. (2016) TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically reprograms carcinoma and stromal cells in breast cancer. J. Biol. Chem. 291, 26291-26303. https://doi.org/10.1074/jbc.M116.740209
  32. Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337. https://doi.org/10.1038/nrc3038
  33. Kruiswijk, F., Labuschagne, C. F. and Vousden, K. H. (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393-405. https://doi.org/10.1038/nrm4007
  34. Li, B., Qiu, B., Lee, D. S., Walton, Z. E., Ochocki, J. D., Mathew, L. K., Mancuso, A., Gade, T. P., Keith, B., Nissim, I. and Simon, M. C. (2014) Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251-255. https://doi.org/10.1038/nature13557
  35. Li, H. and Jogl, G. (2009) Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J. Biol. Chem. 284, 1748-1754.
  36. Lin, R., Elf, S., Shan, C., Kang, H. B., Ji, Q., Zhou, L., Hitosugi, T., Zhang, L., Zhang, S., Seo, J. H., Xie, J., Tucker, M., Gu, T. L., Sudderth, J., Jiang, L., Mitsche, M., DeBerardinis, R. J., Wu, S., Li, Y., Mao, H., Chen, P. R., Wang, D., Chen, G. Z., Hurwitz, S. J., Lonial, S., Arellano, M. L., Khoury, H. J., Khuri, F. R., Lee, B. H., Lei, Q., Brat, D. J., Ye, K., Boggon, T. J., He, C., Kang, S., Fan, J. and Chen, J. (2015) 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat. Cell Biol. 17, 1484-1496. https://doi.org/10.1038/ncb3255
  37. Locasale, J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583. https://doi.org/10.1038/nrc3557
  38. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F. and Groom, A. C. (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865-873. https://doi.org/10.1016/S0002-9440(10)65628-3
  39. Mor, I., Cheung, E. C. and Vousden, K. H. (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb. Symp. Quant. Biol. 76, 211-216.
  40. Mullarky, E., Lucki, N. C., Beheshti Zavareh, R., Anglin, J. L., Gomes, A. P., Nicolay, B. N., Wong, J. C., Christen, S., Takahashi, H., Singh, P. K., Blenis, J., Warren, J. D., Fendt, S. M., Asara, J. M., DeNicola, G. M., Lyssiotis, C. A., Lairson, L. L. and Cantley, L. C. (2016) Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U.S.A. 113, 1778-1783. https://doi.org/10.1073/pnas.1521548113
  41. Nkhoma, E. T., Poole, C., Vannappagari, V., Hall, S. A. and Beutler, E. (2009) The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol. Dis. 42, 267-278. https://doi.org/10.1016/j.bcmd.2008.12.005
  42. Nogueira, V. and Hay, N. (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309-4314. https://doi.org/10.1158/1078-0432.CCR-12-1424
  43. Pacold, M. E., Brimacombe, K. R., Chan, S. H., Rohde, J. M., Lewis, C. A., Swier, L. J., Possemato, R., Chen, W. W., Sullivan, L. B., Fiske, B. P., Cho, S., Freinkman, E., Birsoy, K., Abu-Remaileh, M., Shaul, Y. D., Liu, C. M., Zhou, M., Koh, M. J., Chung, H., Davidson, S. M., Luengo, A., Wang, A. Q., Xu, X., Yasgar, A., Liu, L., Rai, G., Westover, K. D., Vander Heiden, M. G., Shen, M., Gray, N. S., Boxer, M. B. and Sabatini, D. M. (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452-458. https://doi.org/10.1038/nchembio.2070
  44. Paglialunga, F., Fico, A., Iaccarino, I., Notaro, R., Luzzatto, L., Martini, G. and Filosa, S. (2004) G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood 104, 3148-3152.
  45. Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F. and Luzzatto, L. (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209-5215.
  46. Patra, K. C. and Hay, N. (2014) The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354. https://doi.org/10.1016/j.tibs.2014.06.005
  47. Preuss, J., Richardson, A. D., Pinkerton, A., Hedrick, M., Sergienko, E., Rahlfs, S., Becker, K. and Bode, L. (2013) Identification and characterization of novel human glucose-6-phosphate dehydrogenase inhibitors. J. Biomol. Screen. 18, 286-297. https://doi.org/10.1177/1087057112462131
  48. Ramanathan, B., Jan, K. Y., Chen, C. H., Hour, T. C., Yu, H. J. and Pu, Y. S. (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res. 65, 8455-8460. https://doi.org/10.1158/0008-5472.CAN-05-1162
  49. Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. and Ghigo, D. (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 53, 421-436. https://doi.org/10.1016/j.freeradbiomed.2012.05.006
  50. Ros, S., Santos, C. R., Moco, S., Baenke, F., Kelly, G., Howell, M., Zamboni, N. and Schulze, A. (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2, 328-343.
  51. Ros, S. and Schulze, A. (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8. https://doi.org/10.1186/2049-3002-1-8
  52. Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y., Gao, S., Puigserver, P. and Brugge, J. S. (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109-113. https://doi.org/10.1038/nature08268
  53. Singh, S., An, A. and Srivastava, P. K. (2012) Regulation and properties of glucose-6-phosphate dehydrogenase: a review. Int. J. Plant Physiol. Biochem. 4, 1-19.
  54. Stanton, R. C. (2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64, 362-369. https://doi.org/10.1002/iub.1017
  55. Stanton, R. C., Seifter, J. L., Boxer, D. C., Zimmerman, E. and Cantley, L. C. (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J. Biol. Chem. 266, 12442-12448.
  56. Tarin, D., Price, J. E., Kettlewell, M. G., Souter, R. G., Vass, A. C. and Crossley, B. (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44, 3584-3592.
  57. Tian, W. N., Braunstein, L. D., Pang, J., Stuhlmeier, K. M., Xi, Q. C., Tian, X. and Stanton, R. C. (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273, 10609-10617. https://doi.org/10.1074/jbc.273.17.10609
  58. Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292. https://doi.org/10.1016/j.cell.2011.09.024
  59. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  60. Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., Christofk, H. R., Wagner, G., Rabinowitz, J. D., Asara, J. M. and Cantley, L. C. (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492-1499.
  61. Wang, H., Nicolay, B. N., Chick, J. M., Gao, X., Geng, Y., Ren, H., Gao, H., Yang, G., Williams, J. A., Suski, J. M., Keibler, M. A., Sicinska, E., Gerdemann, U., Haining, W. N., Roberts, T. M., Polyak, K., Gygi, S. P., Dyson, N. J. and Sicinski, P. (2017) The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546, 426-430. https://doi.org/10.1038/nature22797
  62. Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  63. Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308. https://doi.org/10.1016/j.ccr.2012.02.014
  64. Wong, C. W., Lee, A., Shientag, L., Yu, J., Dong, Y., Kao, G., Al-Mehdi, A. B., Bernhard, E. J. and Muschel, R. J. (2001) Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333-338.
  65. Yi, W., Clark, P. M., Mason, D. E., Keenan, M. C., Hill, C., Goddard, W. A., 3rd, Peters, E. C., Driggers, E. M. and Hsieh-Wilson, L. C. (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975-980. https://doi.org/10.1126/science.1222278
  66. Zhang, J., Wang, J., Xing, H., Li, Q., Zhao, Q. and Li, J. (2016) Downregulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells. Mol. Cell. Biochem. 411, 331-340.

Cited by

  1. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  2. -benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase vol.32, pp.9, 2018, https://doi.org/10.1002/jbt.22193
  3. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27358-5
  4. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis pp.15821838, 2019, https://doi.org/10.1111/jcmm.14241
  5. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy vol.66, pp.41, 2018, https://doi.org/10.1021/acs.jafc.8b04104
  6. Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/1027453
  7. The Sweet Surrender: How Myeloid Cell Metabolic Plasticity Shapes the Tumor Microenvironment vol.6, pp.None, 2018, https://doi.org/10.3389/fcell.2018.00168
  8. Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/5268031
  9. Metabolism and Autoimmune Responses: The microRNA Connection vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01969
  10. Exploring Dysregulated Signaling Pathways in Cancer vol.26, pp.4, 2020, https://doi.org/10.2174/1381612826666200115095937
  11. Metabolic Adaptations in Cancer Stem Cells vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.01010
  12. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer vol.32, pp.5, 2018, https://doi.org/10.1089/ars.2019.7918
  13. Metabolomic Analysis Identifies Glycometabolism Pathways as Potential Targets of Qianggan Extract in Hyperglycemia Rats vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.00671
  14. Non‐enzymatic reaction of carnosine and glyceraldehyde‐3‐phosphate accompanies metabolic changes of the pentose phosphate pathway vol.53, pp.2, 2018, https://doi.org/10.1111/cpr.12702
  15. The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance vol.21, pp.3, 2020, https://doi.org/10.3390/ijms21030937
  16. Serum Metabolomics Reveals Personalized Metabolic Patterns for Macular Neovascular Disease Patient Stratification vol.19, pp.2, 2018, https://doi.org/10.1021/acs.jproteome.9b00574
  17. Effects of Exogenous Spermidine on Root Metabolism of Cucumber Seedlings under Salt Stress by GC-MS vol.10, pp.4, 2018, https://doi.org/10.3390/agronomy10040459
  18. COX6B2 drives metabolic reprogramming toward oxidative phosphorylation to promote metastasis in pancreatic ductal cancer cells vol.9, pp.5, 2018, https://doi.org/10.1038/s41389-020-0231-2
  19. 6‐Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance vol.46, pp.4, 2020, https://doi.org/10.1002/biof.1624
  20. Snail augments fatty acid oxidation by suppression of mitochondrial ACC2 during cancer progression vol.3, pp.7, 2018, https://doi.org/10.26508/lsa.202000683
  21. Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer vol.145, pp.14, 2020, https://doi.org/10.1039/d0an00762e
  22. Modulating Oxidant Levels to Promote Healthy Aging vol.33, pp.8, 2020, https://doi.org/10.1089/ars.2020.8036
  23. The emerging role of targeting cancer metabolism for cancer therapy vol.42, pp.10, 2018, https://doi.org/10.1177/1010428320965284
  24. Recent advances in light-driven C-H bond activation and building C-C bonds with CO2as a feedstock for carbon capture and utilization technology vol.22, pp.20, 2018, https://doi.org/10.1039/d0gc01796e
  25. Establishing and validating a pathway prognostic signature in pancreatic cancer based on miRNA and mRNA sets using GSVA vol.12, pp.22, 2018, https://doi.org/10.18632/aging.103965
  26. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration vol.236, pp.1, 2021, https://doi.org/10.1002/jcp.29886
  27. Extracellular Vesicles in Cancer Metabolism: Implications for Cancer Diagnosis and Treatment vol.20, pp.None, 2021, https://doi.org/10.1177/15330338211037821
  28. The structure of a novel membrane‐associated 6‐phosphogluconate dehydrogenase from Gluconacetobacter diazotrophicus (Gd6PGD) reveals a subfamily of short‐chain 6PGDs vol.288, pp.4, 2018, https://doi.org/10.1111/febs.15472
  29. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.626577
  30. c-Src facilitates tumorigenesis by phosphorylating and activating G6PD vol.40, pp.14, 2021, https://doi.org/10.1038/s41388-021-01673-0
  31. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation vol.10, pp.5, 2018, https://doi.org/10.3390/cells10051056
  32. Metabolic Response of Triple-Negative Breast Cancer to Folate Restriction vol.13, pp.5, 2018, https://doi.org/10.3390/nu13051637
  33. The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH Oxidases vol.9, pp.6, 2018, https://doi.org/10.3390/biomedicines9060687
  34. TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Is Upregulated in Lymphocytes Stimulated with Concanavalin A vol.22, pp.14, 2018, https://doi.org/10.3390/ijms22147436
  35. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention vol.236, pp.8, 2021, https://doi.org/10.1002/jcp.30276
  36. Evi1 upregulates Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate pathway activation vol.112, pp.10, 2018, https://doi.org/10.1111/cas.15098
  37. Metabolic plasticity enables lifestyle transitions of Porphyromonas gingivalis vol.7, pp.1, 2018, https://doi.org/10.1038/s41522-021-00217-4
  38. A pan-cancer transcriptomic study showing tumor specific alterations in central metabolism vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-93003-3
  39. Cancer metabolism and intervention therapy vol.2, pp.1, 2018, https://doi.org/10.1186/s43556-020-00012-1
  40. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities vol.66, pp.5, 2018, https://doi.org/10.1159/000519784