• Title/Summary/Keyword: Theoretical solution

Search Result 1,050, Processing Time 0.025 seconds

Influence of a weak superposed centripetal flow in a rotor-stator system for several pre-swirl ratios

  • Nour, Fadi Abdel;Rinaldi, Andrea;Debuchy, Roger;Bois, Gerard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.49-59
    • /
    • 2012
  • The present study is devoted to the influence of a superposed radial inflow in a rotor-stator cavity with a peripheral opening. The flow regime is turbulent, the two boundary layers being separated by a core region. An original theoretical solution is obtained for the core region, explaining the reason why a weak radial inflow has no major influence near the periphery of the cavity but strongly affects the flow behavior near the axis. The validity of the theory is tested with the help of a new set of experimental data including the radial and tangential mean velocity components, as well as three components of the Reynolds stress tensor measured by hot-wire anemometry. The theoretical results are also in good agreement with numerical results obtained with the Fluent code and experimental data from the literature.

Theoretical Temperature Analysis for 88316 Piping Weld (SS316강 배관 용접부에 대한 이론적 온도해석)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1623-1629
    • /
    • 2003
  • In this paper, the arc beam is considered as a moving disc heat source with a pseudo-Gaussian distribution of heat intensity. The solution for temperature distribution on welds is derived by using the image heat source method and the superposition method. It is general solution in that it can determine the temperature-rise distribution in and around the arc beam heat source, as well as the width and depth of the melt pool (MP) and the heat-affected zone (HAZ) in welding short lengths, where quasi-stationary conditions may not have been established. As a comparative study, the results of this analytical approach has been compared with that of the finite-element modeling. As a result, The theoretical analysis presented here has shown good consistency and is more time/cost-effective method compared with FEM.

A Study on the Gas Wave Propagation in the Pipe by Numerical analysis (수치해석에 의한 파이프에서의 가스파동전하에 관한 연구)

  • 김명균
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.154-160
    • /
    • 1998
  • This study describes a theoretical and experimental investigation of gas wave propagation in the pipe system. Most calculations of compressible flows in the pipe have been based on the method of characteristics. This technique has propensity to truncate waves and is difficult to apply to non-perfect gas. A method that describes the application of a two-step Lax-Wendroff acheme to solution of the unsteady one-dimentional flow in the pipe was developed. Theoretical calculations using both the method of characteristics and the two-step Lax-Wendroff method are presented including a realistic model for heat transfer and friction processes. In the present work, account is taken of the nonlinear behavior. For sections of parallel pipe, an one dimensional unsteady homentropic analysis is employed, and a numerical solution is obtained with the aid of a digital computer, using the method of characteristics and two-step Lax-Wendroff method. This analysis is then combined with boundary models, based on a quasi-steady flow approach, to give a complete treatment of the flow behavior in the pipe system.

  • PDF

VALIDITY REGIONS OF THEORETICAL MODELS FOR ESTIMATING THE RCS OF LOSSY DIELECTRIC CYLINDERS

  • Hong, Jin-Young;Kwon, Soon-Gu;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.369-373
    • /
    • 2007
  • This paper presents an examination of theoretical scattering models for radar cross sections (RCS) of lossy dielectric cylinders, such as exact analytical solution, low frequency approximation (Rayleigh) and high frequency approximation (Physical Optics). The validity regions of the PO and Rayleigh models are closely examined with exact solution in terms of various wavelengths and dielectric constants of a circular cylinder. And also this paper examines the PO and Rayleigh models for back and forward scatter RCS of a cylinder at various incidence angles and polarizations. It was found that the PO and Rayleigh model have their validity regions for estimating the RCS of a circular cylinder.

  • PDF

Optimization of a four-bar mechanism cyclic pitch control for a vertical axis wind turbine

  • Montenegro-Montero, Mariana;Richmond-Navarro, Gustavo;Casanova-Treto, Pedro
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2022
  • In this paper, the issue of pitch control in a vertical axis wind turbine was tackled. Programming the Actuator Cylinder model in MATLAB, a theoretical optimum pitch solution was found and then a classic four-bar mechanism was adapted to that theoretical solution to achieve a simple and elegant control of the pitch in the turbine. A simulation using the mechanism worked to find the optimum pitch cycles, where it was found that the mechanism would, in fact, increase the efficiency of the VAWT, by at least 11% and in the best case, over 35%. Another aspect that is studied is the possibility of self-start of the turbine by only changing the pitch on the blades. This analysis, however, proved that a further individual pitch control must be used to surpass the cogging torque. All analyses conducted were done for a specific wind turbine that is 2 m2 in the swept area.

Mechanical behavior of composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate under thermo-mechanical loading

  • Bensatallah Tayeb;Rabahi Abderezak;Tahar Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.133-151
    • /
    • 2024
  • In this paper, an improved theoretical interfacial stress analysis is presented for simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results.It is shown that both the sliding and the shear stress at the interface are influenced by the material and geometry parameters of the composite beam. This new solution is intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters.

Effect of Slurry Property on Preparation of Zirconia Film in Electrophoretic Deposition (전착법에서 용액특성이 지르코니아 막형성에 미치는 영향)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.991-996
    • /
    • 1999
  • Effect of solution property on the weight varation and microstructural change of film was studied by electrophoretic deposition in order to obtain a homogeneous and dense zirconia film. As a result of weight kinetics of film which obtained in alcohol or aqueous solution having different polarity experimental data showed large deviation from theoretical ones calculated by Zhang's kinetic model. It had been shown that the weight affecting factors was largely dependent on properties other than dielectric constant and viscosity of solvent zeta potential appiled field and time. In initial stage a main factor of the drastic weight increase was the capillary drag of porous substrate. The cause of weight decrease with time in aqueous solution after 300 s was attributed to the defect of film by sagging and electrolytic reaction. The electrolyte film which prepared in alcohol solution with good wetting for substrate had better homogeneous and dense microstructure than one in aqueous solution with high surface tension.

  • PDF

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES (저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석)

  • Shon, B.C;Kwak, H.S.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.